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by an algorithm interm of input size n.

5. Time complexity is the amount of time required to execute an algorithm.
6. Space complexity is the amount of memory required to execute an algorithm.
7. There are three types of running time analysis

(a) Worst-case
(b) Average-case
(c) Best-case

8. Measuring the performance of an algorithm in relation with the input size n is called 
order of growth.

9. -Asymptotic notations are mathematical tools to represent time complexity of algorithms 
for asymptotic analysis.

10. The Big Oh notation is denoted by ‘O’.
11. The Big O notation define an upper bound of an algorithm running time, it bounds a 

function only from above.
12. Omega notation is denoted by ‘Q’.
13. The omega notation is used to represent the lower bound of algorithm’s running time.
14. The theta notation is denoted by 9.
15. The theta notation bounds a functions from above and below, so it defines exact 

asymptotic behavior.
- ------Z--------1- - -

16. In Polynomial algorithm run time is bounded by a polynomial function.
17. In exponential algorithms run time is bounded by an exponential function, where exponent

is A.
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QUESTION-ANSWERS

t is an algorithm?o 1- (PTU, May 2019 ; Dec. 2019, 2016, 2015, 2013, 2008, 2005, 2004)
The algorithm is defined as a collection of unambiguous instructions occuring in 

Specific sequence and such an algorithm should produce output for given set of input in 
arnount of time or we can also say that an algorithm is a sequence of unambiguous 

instojctions for solving a problem, i.e., for obtaining a required output for any legitimate input 

in a finite amount of time.

Correct result
Output

Error if any

Notion of algorithm
Q 2. What are the properties of algorithm?
Ans. Properties of algorithm :
1, Input : It generally requires finite number of inputs.
2. Output: It must produce at least one output.
X Uniqueness : Each instruction should be clear and unambiguous.
4. Finiteness : It must terminate after a finite number of steps.
5. Effectiveness : The steps of an algorithm must be basic. Basic means, the person 

should be able to carry out these steps using pencil and paper without applying any intelligence.
Q X What do you mean by complexity of an algorithm? Explain time and space 

complexity. (PTU, May 2016, 2013, 2010, 2008 ; Dec. 2010, 2009)
Ans. Complexity of an algorithm : The complexity of an algorithm is a function f(n) 

which measure the time and space used by an algorithm interms of input size n.
Time complexity : Time complexity is the amount of time required to execute an 

algorithm or we can also say that the time complexity of an algorithm is the amount of computer 
time required by an algorithm to run to completion.

The time complexity of an algorithm is commonly expressed using big O notation, which 
suppresses multiplicative constants and lower order terms. When expressed this way, the 
ime complexity is said to be described asymptotically, i.e., as the input size goes to infinity, 
or example, if the time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the 
symptotic time complexity is O(n3).

It is difficult to compute the time complexity in terms of physically clocked time. Let us
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take the example of multiuser system. In multiuser system, executing time depends 
factors such as :

3

on many

1. System load
2. Number of other programs running
3. Instruction set used
4. Speed of underlying hardware
The time complexity is therefore given in terms of frequency count. Frequency count is 

a count denoting number of times of execution of statement.
Space complexity : Space complexity is the amount of memory required to execute 

an algorithm or we can also say that the space complexity can be defined as the amount of 
memory required by an algorithm to run.

To compute the space complexity we use two factors :
Constant and Instance characteristics.
The space requirement S(p) can be given as :

S(p) = C + Sp
Where C is a constant i.e. fixed part and it denotes the space of inputs and outputs. This 

space is an amount of space taken by instruction, variables and identifiers. Sp is a space 
dependent upon instance characteristics. This is a variable part whose space requirement 
depends on particular problem instance.

Space complexity is normally expressed as an order of magnitude, e g O(N A 2) means 
that if the size of the problem (N) doubles then four times as much working storage will be 
needed.

Q 4. What do you mean by “Worst case-efficiency” of an algorithm?
(PTU, Dec. 2009)

Ans. The “Worst case-efficiency" of an algorithm is its efficiency for the worst-case 
input of size n, which is an input (or inputs) of size n for which the algorithms runs the longest 
among all possible inputs of that size.

For example : If you want to sort a list of numbers in ascending order when the numbers 
are given in descending order. In this running time will be the longest.

Q 5. What do you mean by “Best case-efficiency” of an algorithm?
Ans. The “Best case-efficiency” of an algorithm is its efficiency for the best-case input 

of size n, which is an input (or inputs) of size n for which the algorithm runs the fastest among 
all possible inputs of that size.

For example : If you want to sort a list of numbers in ascending order when the numbers 
are given in ascending order. In this running time will be the smallest.

Q 6. Define the “Average case-efficiency” of an algorithm.
Ans. The “Average case efficiency" of an algorithm is its efficiency for the input of size 

n, for which the algorithm runs between the best case and the worst case among all possible 
inputs of that size.

Q 7. How Is an algorithm’s time efficiency measured?
Ans. Time efficiency indicates how fast the algorithm runs. An algorithm’s time efficiency
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Order of growth for some functions
The efficiency analysis framework concentrates on the order of growth of an algorithm’s 

basic operation count as the principal indicator of the algorithm’s efficiency. To compare and 
rank such orders of growth we use three notations.

(i) O (Big oh) notation
(■) Q (Big omega) notation
(a) 0 (Big theta) notation
Q 9. Define best-case step count
Ans. The best case step count is the minimum number of steps that can be executed 

for the given parameters.
Q W. Define worst case step count.
Ans. The worst case step count is the maximum number of steps that can be executed 

for the given parameters.
Q 11. Define average step count.
Ans. The average step count is the average number of steps executed an instances 

with the given parameters.
Q 12. What do you understand by Asymptotic notation? Also define the following 

notations.
(I) ®9 0 (if) Omega (Hr) Theta

(PTU, Dec. 2016, 2014, 2013 ; May 2019, 2018, 2017, 2016, 2014, 2013) 
tima i mptot,c nolat’on '■ Asymptotic notations are mathematical tools to represent 
notation if a aJ®orithms for asymptotic analysis or we can also say that asymptotic

can aivp time n. —-j to represent the ,ime complexity. Using asymptotic notations we
are various 33 “fa8les1 P°S8'b,e”’ “slowest possible” or “average time”. There
are mosth/ userid™ 3 38 and ° used are called asymptotic notations. These notations 
are mostly used to represent time complexity of algorithms.

J-------- --------r^tjon of its input size by counting the number of times its basic operation
is measured as a Basjc operatjOn is the most time consuming operation in the

innerm°st l00P
o . write a short note on order of Growth. , .u .
Ans Order of Growth : Measuring the performance of an algorithm in relation with the 

put size n is called order of growth. For example, the order of growth for varying input size

Uf II I'Z

0 log n n log n n2 n3 2n n!
1 0 0 1 1 2 1

2 1 2 4 8 4 2

4 2 8 16 64 16 24

8 3 24 64 512 256 40320

16 4 64 256 4096 65,536 Large

32 5 160 1024 32768 4,294,967,296 Very large
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(I) Big O notation : The big oh notation is denoted by ‘O’. The big Onotati 
upper bound of an algorithm running time, it bounds a function only from above"

e.g. : Let us consider the case of Insertion sort. It takes linear time in best 
quadratic time in worst case. We can safely say that the time complexity of insertion sort"^ 
O(n A 2). Note that O(N A 2) also cover linear time. If we use 9 notation to represent time 
complexity of insertion sort, we have to use two statements for best and worst cases •

(a) The worst case time complexity of insertion sort is 9(n A 2).
(b) The best case time complexity of insertion sort is 9(n).
The Big O notation is useful when we only have upper bound on time complexity of an 

algorithm. Many times we easily find an upper bound by simply looking at the algorithm. 
O(g(n)) = {f(n) : there exist positive constants c and n0 such that 0<=f(n) < = cg(n) for all 

n > = n0}

no f(n)=O(g(n))

(ii) Omega : Omega notation is denoted by ‘O’. This notation is used to represent the 
lower bound of algorithm’s running time. Using omega notation we can denote shortest amount 
of time taken by algorithm.

Q notation can be useful when we have lower bound on time complexity of an algorithm. 
For a given function g(n), we denote by Q (g(n)) the set of functions.

Q(g (n)) = {f(n) : there exist positive constants c and such that 0<=cg(n) < = f(n) for 

all n > = n0}.

(ill) Theta : The theta notation is denoted by 0. By this method the running time is 
between upper bound and lower bound. We can also say that the theta notation bounds a 
functions from above and below, so it defines exact asymptotic behavior. A simple way to get 
theta notation of an expression is to drop low order term and ignore leading constants. For 

example let us consider the following expression



LORD^Destgn & Analysis of Algorithms

3n + 6n ♦ * °(n') hArAuse there will always be a n0 after which
Dropping lower order terms is always fine because ineiw

0(n3) boats G(n2) irrespective of the constants involved
For a given function g(n), we denote 0(g(n)) is following set of functions. 
0(9(n)) = (f(n) : there exist positive constants ct. c2 and n0 such that 0 <= cVg(n)<. 
f(n)<« c2 • g(n) for all n>. Hq)
if f(n) is theta of g(n). then the value f(n) is always between ct * g(n) and c2 • g(n) for 

large values of n(n>=no). The deflation of theta also requires that f(n) must be non-negative 
for values of n greater than ng.

c2g(n)

no f(n)=6(g(n))

Q 13. Write a short note on polynominal Vs exponential running time.
(PTU, Dec. 2019, 2016 ; May 2015)

Ans. Polynomial Vs. Exponential running time :
Polynomial running time : An algorithm is said to be solvable in polynomial time if the 

number of steps required to complete the algorithm for a given input is O(nk) for some non­
negative integer k, where n is the complexity of the input. Polynomial-time algorithms are said 
to be “fast”. Most familiar mathematical operations such as addition, subtraction, multiplication 
and division, as well as computing square root, powers and logarithms, can be performed in 
polynomial time. Computing the digits of most interesting mathematical constants, including 
pi and e, can also be done in polynomial time.

All basic arithmetic operations (i.e. addition, subtraction, multiplication, division), 
comparison operations, sort operations are considered as polynomial time algorithms. 

We can also say that in polynomial algorithm run time is bounded by a polynomial 
function (addition, subtraction, multiplication, division, non-negative integer exponents).

□ n, n2, n5000, etc.
Exponential running time : The set of problems which can be solved by an exponential 

time algorithms, but for which no polynomial time algorithm is known. An algorithm is said to 
be exponential time, if T(n) is upper bounded by 2P°Mn)t where poly(n) is some polynomial in 
n. More formally, an algorithm is exponential time if T(n) is bounded by O(2nK) for some 
constant k.

We can also say that in this run time is bounded by an exponential function, where 
exponent is n.

□ nn, 2n, etc.

Introduction

computer (on^ J*’
Q 14. What la program?
Ana. A program Is a set of operations that a *

properly. The sequence ot steps Involved In the prooram ,un W
and to avoid errors. co^Wer tun smooth^ ■

Q 15. What Is set algorithm? 1
Ans. Set algorithms are input-specialized algorithms that deal with sets 

basic mathematical set operations over sets with generic element types Sit irnctuZT 
containers with red-black trees. The reason for this is that operations with sets require Um 
and bounded search on set members. This can be achieved with bmary search or. rer«*ack 
trees. Red-black trees are one of the ways of getting balanced bmary trees arw. O Ooq H) 
bounded binary search time, the other alternatives being AVL trees and B-trees AVt trees 
are better balanced than red-black trees , however, they require more operations to maintain, 
the balance. B-trees would be a better choice with huge sets. Having set etemenu m bnary 
search trees assures the precondition that all set elements should be sorted. Set aigontoma 
can be applied on container classes other than sets but in this case programmer should take 
care of the sorting.

Q 16. What do you understand by algorithm evaluation?
(PTU, May 2018 , Dec, 2007)

Ans. Evaluation is same as the testing of an algorithm. It mainly refers to the ftndrg of 
errors by processing an algorithm.

Q 17. Given an example of an algorithm which Is infinite in nature.
(PTU, May 2009, 2007 ; Doc. 2009, 2008)

Ans. Divide and conquer is such an algorithm which is infinite in. nature. In the approach, 
whole problem is divide into several sub problems. These sub problems are solved recursively 
and are smaller in size as compared to original problem.

Q 18. Give two metrics for evaluating an algorithm. (PTU, May 2010)
Ans. Average Bias (Accuracy): Average bias is one ol the conventional metres that 

has been used in many ways as a measure of accuracy. It averages the errors m predictions 
made at all subsequent times after prediction starts for the rth UUT This metric can be 
extended to average biases over all UUTs to establish overall bias.

i=1

Sample Standard Deviation (Precision) : Sampled standard deviation measures the 
dispersion/spread of the error with respect to the sample mean of the error. This metrics is 
restricted to the assumption of normal distribution of the error It is. therefore, recommended 
to carry out a visual inspection of the error plots to determine the distribution characteristics 
before interpreting this metric

S = ) 1-1
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An acorintr s a free step-by-step procedure to achieve a required result. 
Ar, aigorfrrr is a sequence of computational steps that transform the input into the

An ataorWim is a sequence of operations performed on data that have to be organized 
in dasa structures.
An algorithm is an abstraction of a program to be executed on a physical machine 
(model at computation).

Tnere are oasacaf-y two techniques to analyse the algorithm which are space complexity 
ano bme camotexity. Tme complexity of an algorithm concerns determining an expression of 
the number of 3»eps needed as a function of the problem size. Since, the step count measure 
rssorrewh^ coarse, one does not asm at obtaining an exact step count. Instead, one attempts 

7 7 to asyrnptotc bounds on the step count. Asymptotic analysis makes use of the O (Big

notation^ constructs used by computer scientists in the analysis of 
notation and Q (Big Omega) notation. The performance evaluation 

. th . * by totalling the number of occurrences of each operation when
unning the algorithm. The performance of an algorithm is evaluated as a function of the 

rnput size n and to to be considered modulo a multiplicative.
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—----------------------- -  7 7 . (PTU, May 2011)

: (X - OC^K^I structures of a pabular type 
n ZXon • Corrie the number of al d**™' structure of a particular type.
□ sXX at least one example of a combinatorial structure of a particular

Q XL the various steps used in designing an algorithm, 
ua usux (PTU, Dec. 2011 ; May 2013, 2008)

Ans. Vwxws steps used in designing an algorithm :
r jnde?stencSng fe problem
? Decson making on

of computebonal devices
Choice rr exact or approximate problem solving method

(b* Date s&ixxxas
id AUxsfrrric staectes.

а. SseLtecakr at agorrrrr
x ^ffcahons
5- Anavss or arprifrm
б. iiii|a.arrihfinn or coding of algorithm.

Q 21. What is atgorfthm? Write the various performance analysis techniques of 
atgorita. Dtecuss advantages and cfcadvantages of each. (PTU, Dec. 2018 ; May 2008) 

Ans. Ar. ata&m s a sei of nies for canying out calculation either by hand or on a 
machine.

□
□

introduction^___ _ ___ __ ________ _ _________ _ _____________

Q 22. Explain the algorithm of e norvdaterminlmio finite tutomeltort ~ "
(PTO, Dec, 2oog 20o?\ 

Ans. Lot Q bo ft Unit© »ol end tot X ho e flnito nol of eymbole. Aho let 6 be e lunch? 
from QX X to lot qn bo n atato In Q end tot A bo n utast of Q Wo cell the etofhente o?q 

a state, 6 the transition function, q0 the Initial etoto and A the eot of accepting stR|G9 
Thon a non-dotomMnlstlc finite automation to a 5-tuplo < Q. L, etc, ft, A > 
Example : Q « (0. 1), X « (a), A ■ (I) tho Initlnl main to 0 and A to no shown In the 

following table
State (q) Input (a) Next Steo (6 (q. a))

0 a (1)
1 a 0

A state transition diagram for this finite automation to given below

a

1

If the alphabet X is changed to (a, b) in stead of (a), this is shM an NPA that accepts (a)

Q 23. What is deterministic algorithm? (PTU, May 2012. 200?)
OR

What do you mean by deterministic and norvdeterministic algorithms? 
Differentiate between them. Write example for each of them. (PTU. Dec. 2018)

Ans. A deterministic algorithm is an algorithm which, in informal terms, behaves 
predicably. Given a particular input >t vrii afways produce the same output and the underi.mg 
machine will always pass through the same sequence of states DeterTwvsbc algonthms are 
by far the most studied and familiar kmd of algorithm, as wen as one of the mes: oractcal 
since they can be run on real machines efficientiy.

Formally, a deterministic algorithm computes a mathematical funebon a tunOon has a 
unique value for any given input, and the algonthm is a process that produces tNs parsed 
value as output

Non-deterministic : A variety of factors can cause an algorithm to behave n a way 
which is not deterministic, or no-deterministic.

□ If it uses external state other than the input, such as user input a global vanabie. a 
hardware timer value, a random value or stored disk data.

□ If it operates in a way that is timing-sensitive, for example if it has multiple processors 
writing to the same data at the same time. In this case, the precise order in which 
each processor writes its data will affect the result.

□ If a hardware error causes its state to change in an unexpected way. 
Although real programs are rarely purely deterministic, it is easier for humans as well

as other programs to reason about programs that are. For this reason, most programming
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--------  make an effort to Prevent to

languages and esP^ except under controlled conditions.
above events from happe de’ermln|st|c and non-determinlstic algorithm : Algorithm is 

Difference bet _ output generated is same for a function. A mathematical
deterministic if for g state fe known a, every step of the a|gorithm
fuHCion isnJ'er^^Sn.determin'istic if there are more than one path the algorithm can take. 
Due to this, one cannot detemine the next state of the machine running the algorithm. Example

would be a random function.Q 24. What is reverse polish notation? (PTU, Dec. 2005)
Ans. Reverse Polish Notation is a way of expressing arithmetic expressions that avoids 

the use of brackets to define priorities for evaluation of operators. In ordinary notation, one 
might write (3 + 5) * (7 -2) and the brackets tell us that we have to add 3 to 5, then subtract 
2 from 7, and multiply the two results together. In RPN, the numbers and operators are listed 
one after another, and an operator always acts on the most recent numbers in the list. The 
numbers can be thought of as forming a stack, like a pile of plates. The most recent number 
goes on the top of the stack. An operator takes the appropriate number of arguments from 
the top of the stack and replaces them by the result of the operation.

In this notation the above expression would be 3 5 + 72 - *
Q 25. What is a recursive relationship? (PTU, Dec. 2006)
Ans. A recursive relationship can be defined as a relationship that is expressed about 

multiple records within one table. As an example if we take an employee table then there are 
some employees who are supervisor and some who are being supervised. This is the 
relationship of supervisor and supervisee is called a recursive relationship.

More concrete definition of recursive relationship can be a relationship between
information held in a field, group of fields, or complete record and information of the same 
type held in one or more other occurrences of that record, or part thereof.

Q 26. What is asymptotic time complexity? (PTU, May 2011 ; Dec. 2007)
Ans. In computer science, the time-complexity of an algorithm quantifies the amount of 

time taken by an algorithm to run as a function of the size of the input to the problem. The 
time complexity of an algorithm is commonly expressed using big O notation, which supresses 
multiplicative constant and lower order terms. When expressed this way, the time complexity 
is said to be described asymptotially, i.e., as the input size goes to infinity. For example, if the 
time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the asymptotic time 
complexity is O (n3).

Q 27. Define big omega notation (Q) and little omega notation (co).
(PTU, Dec. 2008, 2005)

Ans. Big Omega Notation (Q) : A function t (n) is said to be in Q (g(n)), denoted t (n) 
e Q (g(n)), if t (n) is bounded below by some positive constant multiple of g (n) for all large n, 
i.e., if there exist some positive constant c and some non negative integer n0 such that

T (n) < c g (n) for n > n0

Introduction
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Little Omega Notation (co) : The function in (g) are the larger function of o (g) '
Conspiring *g’ be set of function from the non-negative integer into the positive real numbers 
Then co (g) is set of function ‘f’ also from the non-negative integers into the positive real

numbers, such that lim = <».
n->oo g(n)

Q 28. Differentiate between space complexity and time space trade off.
(PTU, May 2009)

Ans. A space-time or time-memory tradeoff is a situation where the memory use can 
be reduced at the cost of slower program execution (and, conversely, the computational time 
can be reduced at the cost of increased memory use). As the relative costs of CPU cycles, 
RAM space, and hard drive space change, hard drive space has for some time been getting 
cheaper at a much faster rater than other components of computers, the appropriate choices 
for space-time tradeoffs have changed radically. Often, by exploiting a space-time tradeoff, a 
program can be made to run much faster.

Q 29. Is 2n + 2 = O (2n + 1)? (PTU, May 2010)
Ans. No, 2n + 2 is not equal to O (2n + 1).
Q 30. Define recurrence relation. (PTU, Dec. 2010, 2008 ; May 2013, 2010)
Ans. A recurrence relation is an equation that recursively defines a sequence . each 

term of the sequence is defined as a function of the preceeding terms. The term difference 
equation sometimes (and for the purposes of this article) refers to a specific type of recurrence 
relation. However, ‘difference equation’ is frequently used to refer to any recurrence relation. 
An example of a recurrence relation is the logistic map :

^n+1 = Y^n 0 ~~ Xn)
Some simply defined recurrence relations can have very complex (chaotic) behaviours, 

and they are a part of the field of mathematics known as non-linear analysis. Solving a 
recurrence relation means obtaining a closed-form solution : a non-recursive function of n. 

A recurrence relation for the sequence {an} is an equation that expresses an is terms of 
one or more of the previous terms of the sequence, namely, ao, a1.......a^, for all integers n
with n > n0, where n0 is a non-negative integer.

A sequence is called a solution of a recurrence relation if it terms satisfy the recurrence 
relation. In other words, a recurrence relation is like a recursively defined sequence, but 
without specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have (and usually has) multiple solutions. 
If both the initial conditions and the recurrence relation are specified, then the sequence is 
uniquely determined.

Example : Consider the recurrence relation 
an = 2an_1 - an_2 for n = 2, 3, 4, ....

Is the sequence (an) with an = 3n a solution of this recurrence relation. 
For n > 2 we see that

2an_1 - an_2 = 2 (3 (n - 1)) - 3 (n - 2) = 3n = an.
Therefore, {an} with an = 3n is a solution of the recurrence relation.
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Q 31. What do you mean by term order of 2Q12 . Dec. 2010> 2009)

Ans. Complexity can then be characterized by lack of symmetry 
by the fact that no part or aspect of a complex entity can provide sufficient informat on to 
actually or statistically predict the properties of the others parts. This again connec s o e 
difficulty of modelling associated with complex systems.

Q 32. Define Big oh Notation (O) and Little oh Notation (o). (PTU, May 2009) 
Ans. Big oh Notation (O): f (n) is o (g(n)) if f (n) is asymptotically less than or equal to

9 <n)-
Little oh Notation (o): f (n) is o (g(n)) if f (n) is asymptotically strictly less than to g (n).

Q 33. What do you mean by worst case analysis? (PTU, May 2013 ; Dec. 2010) 
Ans. The worst case time complexity is the function define by the maximum amount of 

time needed by an algorithm for an input of size, ‘n’. Thus, it is the function defined by the 
maximum number of steps taken on any instance of size ‘n’.

Q 34. List different notions of complexity of an algorithm. (PTU, Dec. 2011) 
Ans. Big O notation, Omega notation, Theta notation.

Q 35. Find the big of (0) notation for the following function 
(0 f (n) = 5995 (ii) f (n) = 3n + 5 (Hi) f (n) = 69n2 + 35 (iv) f (n) = 70n3 + 35 n2 + 45n *

(PTU, Dec. 2005)
Ans. (i) f (n) = 5995
f (n) < 5995 * 1, where c = 5995, and n0 = 0
thus, big of (0) notation is f (n) = 0 (1).
(ii) f(n) = 3n + 5
for f (n) = 3n + 5, where ‘n’ is at least 5, n > 5
3n + 5 < 3n + n z 4n
So, f (n) = 0 (n)
(Hi) f (n) = 69n2 + 35 for n > 35
69n2 + 35 <; 69n2 + n
Now, for n < n2
69n2 + n 69n2 + n2 £ 70n2 {c = 70, n0 = 1}
So, f (n) = 0 (n2).
(iv) f (n) = 70n3 + 35n2 + 45n

for n2 > 45n
70n3 + 35n2 + 45n < 70n3 + 35n2 + n2 £ 70n3 + 36n2

Now for n3 a 36n2

70n3 + 36n2 <Z 70n3 + n3 < 71 n3, {C = 71, n0 = 70)

So, f (n) = O (n3).

Introduction
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as :

let,

since,

22n

C

c changed so c is not a constant.

Ans.

i

. 4n

= 7.4n - 2n.

= 6.4n +

....(1)
....(2)

f (n) < Cg (n) 
f (n) = 2n+1

= 2n+1 £ Cg (n) => 2n. 2 £ Cg (n) 
= 2n. 2 £ 2n => c > 2 

f (n) = 0 (g (n))
2n+1 = 0 (2n).

(ii) 22n = 0 (2")?
Show that f (n) < Cg (n)

C.2"

2?n 
-—
2n

— 22n-n = 2n

> 2n (not a constant)

=> C
=> c

does not have any fixed value, because where n change
Hence, 22" * 0 (2n).

Q 37. Consider the recurrence Tn = 4T (n - 1) + 2n with T (0) = 6. Guess the 
solution and prove it by induction. (PTU, Dec. 2005)

Tn = 6.4n + X 4n_i • 2*
i = 1

= 6.4n +4n £

Q 36. Argue on the following relation
(I) Is 2«*1 = 0 (2")?
(ii) Is 22" = 0 (2") (PTU, May 2008 , Dec. 2005)
Ans. (I) 2n*1 = 0 (2n)?
For O-notation we have to show that function is asymptotically bounded by upper bounds

/

1- -I v 27 J
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and modify ; and

I

(PTU, May 2012)

Q 38 Explain how to validate and analyze the algorithms. 
Q 38. Explain now (PTU, 20Qg .

OR
What do you analyze in an algorithm? What is the basis of analysis? Explain. 

(PTU, May 2012)
learn more about an algorithm, we can ‘analyze’ it. By this we mean to 
of the algorithm and to draw conclusions about how the implementatio

- will perform in general. But what can we analyze? We can 
time of a program as a function of its inputs • 

---------- maximum memory space needed for program data •
line the total size of the program code ;

Determine whether the program correctly computes the desired result •

Ans. In order to learn more
study the specification c----- .
of that algorithm - the program

□ Determine the running
□ Determine the total or
U Determine *

□ Ste^ine ^’complexity of the program - e.g., how easy is to read, understand, 

and modify ; and
□ Determine the robustness of the program - e.g. how well does it deal with unexpected 

or erroneous inputs?
Validate Algorithms : The process of measuring the effectiveness of an algorithm 

before it is coded to know the algorithm is correct for every possible input. This process is 
called validation.

Once an algorithm has been devised it become necessary to show that it works it 
computer the correct to all possible, legal input. One simply way is to code into a program. 
However, converting the algorithm into program is a time consuming process. Hence, it is 
essential to be reasonably sure about the effectiveness of the algorithm before it is coded. 
This process, at the algorithm level, is called ‘validation’. Several mathematicaland other 
empirical method of validation are available. Providing the validation of an algorithm is a fairly 
complex process and most often a complete theoretical validation though desirable, may not 
be provided. Alternatively, algorithm segment, which have been proved elsewhere may be 
used and the overall working algorithm may be empirically validated for several test cases. 
Such method, although suffice in most cases.

Q 39. And the Big-Oh notation for the following function : 
(0 4x2 - 5x + 3
(■<) f (X) = (X + 5) log2 (3x2 + 7) js 0 (x |Og2 x)

(x2+5log2xj

(2x +1)

Ans.(i) f(x) = 4x2-5x + 3

|f (x)| = |4X2 _ 5x + 3|

s |4x2| + |_5X| | |3|
~ 4x2 + 5x + 3, for all x > 0
~ 4x2 + 5x2 + 3x2, for all X > 1

Introduction

15£ 12x2, for all x > 1
We conclude that f (x) is O (x2). Observe that C = 12 and K = 1 |mm . 

big-O 'he definition of
(H) f (x) = (x + 5) log2 (3x2 + 7) 

|f (x)| = |(x + 5) log2 (3x2 + 7)|
= (x 4- 5) log2 (3x2 + 7), for all x > -5
£ (x + 5x) log2 (3x2 4 7x2), for all x > 1
£ 6x log2 (10x2), for all x > 1 
£ 6x log2 (x3), for all x > 10 
£ 18x log2 x, for all x > 10.

We conclude that f (x) is O (x log2 x). Obsen/e that C = 18 and K = 10 from the definition 
of big-O.

(Hi)

since log2 x < x for all x > 0, we conclude that 
5 log2 x < 5x < 5x2, for all x > 1
Since 2x + 1 > 2x, we conclude that

1 1
------- 7 < — for all x > 0

If (x)| =
x2-b5log2x

2x + 1

x2 4-5log2 x 
2X4-1

, for all x > 1

< 3x, for all x > 1
We conclude that f (x) is O (x). Observe that C = 3 and K = 1 from the definition of 

big-O.

Q 40. Consider the recurrence :
T (n) <; 4T (n/2) + n2
T(1) = 1

Find the solution. (PTU, Dec. 2004)
Ans. Let T (n) = R (n). nu, substitute this value into the original recurrence. 

R (n) . nu < 4 (n/2)a R (n/2) + n2
Put a = 2, so as to cancle out the multiplicative factor of 4.
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16 n2R(n)<4(n2/4)R(n/2) + n2

, . _ n2 we have
Dividing through (y^-R'(n/2) + 1

Since R(n)e0 (log n)Rthus.na{a = 2}

T(n)=R(n).n2
T (n) e 0 (n2 log (PTU, Qec 20Q9 2Q08 . May

Q 41. What is re-entrant program ■ describes a computer program or routine that is 
Ans. Re-entrant is an anJememory ran be shared by multiple users. Reentrant code is 

written so that the same C°P^" systems and in applications intended to be shared in multi- 
commonly required w^es a reentrant program by making sure that no instructions
“^^X^nte^oTvariable values in other instructions within the program. Each time th e 

is entered for a user, a data area is obtained in which to keep all the variable values 
oTthaUiser. The data area is in another part of memory from the program itself. When the 

irogram is interrupted to give another user a turn to use the program, information about the 
ata area associated with that user is saved. When the interrupted user of the program is 
nee again given control of the program, information in the saved data area is recovered and 
le program can be reentered without concern that the previous user has changed some 
struction within the program.

Q 42. Define non-deterministic algorithm. (PTU, May 2013)
Ans. Non-deterministic algorithm : A non-deterministic algorithm is one in which for 

given input instance each intermediate step has one or more possibilities. This means that 
ere may be more than one path from which the algorithm may arbitrarily choose one. Not 
II paths terminate successfully to give the desired output. The non-deterministic algorithm 
forks in such a way so as to always choose a path that terminates successfully,! thus always 
living the correct result. We can also say that algorithm is non-deterministic if there are more 
han one path the algorithm can take. Due to this, one can not determine the next state of the 
machine running the algorithm. Example would be a random function.

Q 43. Explain the tradeoff between time and space while analyzing an algorithm.

Ans A (PTU, MaV 2013)
processing tradeott refers t0 a choice between algorithmic solutions of a data

- increasing the spZe to stor^th"6 l° deCrease ,he runnin9 time of an algorithmic solution by 
at the cost of increased ° d3ta and V’Ce versa* The computation time can be reduced 
hard drive space change^ard^ AS *he re,at’ve costs °f CPU cycles, RAM space, and 

faster rate than other com Space has ^or some time been getting cheaper at a much 
tradeoffs have changed radical]60*8 °* COmputers’ the appropriate choice for space-time 
be made to run much faster 3 by exploiting a space-time tradeoff, a program can
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Q 44. What are the criteria that an algorithm should follow?
(PTU, May 2015 ; Dec. 2013)

Ans. Every algorithm must satisfy the following criteria :
1. Input : There are zero or more quantities which are externally supplied.
2. Output : At least one quantity is produced.
3. Definiteness : Each instruction must be clear and unambiguous.
4. Finiteness : If we trace out the instructions of an algorithm, then for all cases the 

algorithm will terminate after a finite number of steps.
5. Effectiveness : Every instruction must be sufficiently basic that it can in principle be 

carried out by a person using only pencil and paper. It is not enough that each operation be 
definite, but it must also be feasible.

I
Q 45. Arrange the following growth order in the increasing order
O(n3), 0(1), O(n log n), O(n), O(n* log n) (PTU, Dec. 2013)
Ans. 0(1), O(n), O(n log n), O(n2 log n), O(n3)

Q 46. Show that for any real constants a and b, Where b > 0, (n+a)b= B(nb).
(PTU, Dec. 2017 ; May 2014) I

Ans. (n+a)b < (n+|a|)b, where n>0
< (n+n)b for n > |a|
= (2n)b
= Cvnb, where C1=2b

Thus (n+a)b = Q (nb) --0)
(n+a)b > (n-|a|)b, where n>0

> (C'2n)b for C’2 = where n > 2|a|

as n/2 < n-|a|, for n > 2|a| 
Thus (n+a)b = O(nb) -..(2)
The result follows from 1 and 2 with C-j = 2b, C2 = 2_b, and no. > 2|a|.

Q 47. What is difference between an algorithm and a program?
(PTU, May 2014)

Ans. An algorithm is a step by step outline or flowchart how to solve a problem whereas 
a program is an implemented coding of a solution to a problem based on the algorithm. 

Q 48. Define algorithm validation. (PTU, May 2016 rDec. 2014)
Ans. The process of measuring the effectiveness of an algorithm before it is coded to 

know the algorithm is correct for every possible input. This process is called validation. 
Algorithm validation is the process of computing the correct answer for all possible legal 

inputs after the algorithm is created or devised. The purpose of the validation is to assure that 
the algorithm will work correctly independently of the programming languages. Once the 
validation is done the program can be written and the second phase of the validation, which 
is referred to as program proving or program verification, begins.



(?) 4 n2Example : Consider T(n) = 2T

(PTU, May 2017 ; Dac. 2014) 
equation that defines a soquonco rocuroivoly it iQ

18____________________ _ ______Q 49. What is a Recurrence Equation 7
Ans.The recurrence equation is an eq*»«ti

normally in following formT(n)«T(n-1Hn!orn>0 (
T(0) « 0 /2.

Here equation 1 is called recurrence relation and equation 2 is callod initial condition
The recurrence equatron can have infinite number of sequences

Tho general solution to the recursive function specifies some formula.

For ex Consider a recurrence relation
1(n) « 2f (n-1) ♦ 1 lor n>1

f(1)= 1Then by solving this recurrence relation we get f(n) = 2n-1.

When n « 1. 2. 3 and 4Q 50. Explain recursion tree method with the help of an example
Ans. Recursion Tree method is a pictorial representation of an iteration method »s m the form of a tree where al each level nodes are expanded. In general we c ° Wh'Ch 

second term m recurrence as root It is useful when the divide and congues algorith "S' 
It is sometimes difficult to come up with a good guess. In recursion tree each root” 'S.USed 
represents the cost of a s.ngle subproblem We sum the costs within each of the |P Ji" 

tree to obtain a set of pre-level costs and then sum all pre-level costs to determine h cost of all levels of the recursion. A recursion Tree is best used to generate a nnnd ' 
which can be verified by the substitution method. 9°od 9uess

We have to obtain the asymptotic bound using recursion tree method.
Solution :

T(n/2) T(n/2) T(n/2) T(n/2)

/\
T(n/4) T(n/4) T(n/4) T(n/4)

(n/8)2 (n/8)2 (n/8)2 (n/8)2

A A A A
(n/8)2 (n/8)2 (n/8)2 (n/8)2 

A A A A

4
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T(n) « n2 logn

T(n) = On2
Q 51. Explain analysis of algorithm through various recurrence retaftons. 
Ans. Many algorithms are recursive in nature When we analyse them we y*i a 

recurrence relation for time Complex ion. We get running time on an »nput of tte n as a 
function of n and the running time on input of smaller sizes e g. in Merge son to sort a 
array, we divide it in two halves and recursively repeat the process !o< toe two halves -ina!iy 
we merge the results Time complexity of merge sort can be written as Tfnj » 2T ^rv2) ♦ Cn 
There are many other algorithms like search. Tower of Hanoi etc There are ma#ery m.ree 
ways for solving recurrences

1. Substitution method : We make a guess for the solution and then we use 
mathematical induction to prove the guess is correct or incorrect

e g. Consider the recurence T(n) = 2T (n/2) +n.
We guess the solution as T(n) = 0(n log n). Now we use induction to prorve cur guess 
We need to prove that T(n) < = Cn logn. We can assume that it is true ‘or values smaller 

than n
T(n) = 2T(rV2) > n

= Cn/2log Cn/2) + n
= Cnlogn - Cnlog2 > n
= Cn logn - Cn + n

< = Cn logn
2. Recurrence Tree method : In this method, we draw a recurrence tree and calculate 

the time taken by every level of tree. Finally, we sum the work done at all levels. To draw the 
recurrence tree, we start from the given recurrence and keep drawing till we find a pattern 
among levels. The pattern is typically arithmetic or geometric senes

e g. Consider the recurrence relation
T(n) = T(n/4) + T(n/2) + Cn2

Cn2

T(n/4) T(n.’2)
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ton T(n/4) and T(n/2), we get following recursion
Introduction
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tree

C(n’)/16Ctr?y64

qn’yie

/\ /\

g^atang down further gives us following :

Cn!

To know the value of T(n), we need to calculate sum of tree nodes level by level. If we 
sum the above tree level by level, we get the following series

T(n) = 0(0*2 + 5(n*2)/16 + 25(n*2)/256) +....
The above series is geometncal progression with ratio 5/16. To get an upper bound we 

can sum the infinite series we get the sum as (n2)/(1 - 5/16) which is 0 (n2)
3. Master Method : Master method is a direct way to get the solution. The faster 

method works only for following type of recurrences or for occurrences that can be transformed 
to totowtng type

T(n) = aT(n/b) + f(n)
where a > = 1 and b >1
There are following three cases .
1. If f(n) = Q (n0) Where C < log a then T(n) = Q (nlogba)
2. W f(n) = Q (n°) Where C = logba then T(n) = Q(nclogn)
3. if f(n) = Q (n0) Where C > logba then T(n) = Q (f(n))
Master method is mainly derived from recurrance tree method. If we draw recurrence 

tree ol

= aT(n/b) f(n), we can see that the work done at root is f(n) and work done at all 
leases is where C is k>goa And the height of recurrence tree is logbn.

f(n/b*2) f(n/bA2)

i :

0(1) 0(1) 0(1)

f(n/bA2) f(n/bA2)

: I :

0(1) 0(1) 0(1)

f(n/b*2) flnb*2; f(rVtx*2) 
) l- I
: 2

0(1) 0(1) 0(1)

In recurrence tree method, we calculate total work done tt the work done at leaves is 
polynomically more, then leaves are the dominant part, and our result becomes the workdone 
at leaves (case 1). If work done at leaves and root is asymptotically same, then our result 
becomes height multiplied by work done at any level (case 2). If work done at root is 
asymptotically more, then our result becomes work done at root (case 3).

Q 52. What is the time complexity of Conventional matrix multiplication method 
and Strassen’s matrix multiplication method ? (PTU, May 2018 ; Doc. 2017)

Ans. Conventional matrix multiplication method: The time complexity of conventional 
matrix multiplication method is 0 (n A 3).

Strassen’s matrix multiplication method : Complexity at strassen s matrix 
multiplication method is Otn2-81).

Q 53. Prove that if f1 (n) = O (g1 (n)) and f2 (n) = O (g2 (n)), then f, (n) ♦ (n) a
O(9i (n) ♦ g2 (n)). (PTU, May 2018 ; Oec. 2018, 2017)

Ans. Let f n(n) = O (g, (n)) and f2 (n) = O (g^n))
This means that there exist constants Cv > 0 such that f,(n) < C, g, (n) and f2(n) s 

^292(n)
for all n > 0 integers. To prove the claim, we must find some constant Cj that causes 

fi (n) + f2 (n) - C3 (9i (n) +■ g2 (n)] for all n > 0 integers, 
fi(n) + f2 (n) < C4 g! (n) + C2g2(n)

< max (C1 C2) g, (n) + max (Cv Q g^ (n)
< max (C1t C2) (g^n) + g2(n)J
= C3 (9i(n) * g2(n)l 

We have found a C3 = max (Cb C2) that satisfies the definition of big oh proving the 
claim.

Q 54. What are explicit and Implicit constraints ? (PTU, Dec. 2015)
Ans. Explicit constraints : These are rules that restrict each xi to take values only
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relate to each other.

e.g., xi> = 0
xl = ° rilles which describes the way in which the xi must

Implicit constraints : These are

relate to each other. case analysis ? (PTU, Dec. 2015)
q 55. What is aver j . Analyze average running time over some distribution of 
Ans. Average ’ cage ana|ysis requires a notion of an “average" input to an 

inputs. Other words b,em of devising a probability distribution over inputs.
al90rir«WDescribeSan algorithm to perform selection in worst case linear time. 

Q 56. Deserve a n (PTU,

Ans. Following is the algorithm :
1 Divide arr [ ] into [n /5] groups where size of each group is 5 except possibly the last 

group which may have less than 5 elements.
2 Sort the above created [n/5] groups and find median of all groups. Create an auxiliary 

array medial] and store medians of all [n/5] groups in this median array.
3. Med of Med = K th smallest (median [0 ..'[n/5] - 1] [n/10])
4. Position art[ ] around med of Med and obtain its position, 

pos = partitioh (arr, n, med or Med)
5. It pos = = k return med of Med
6. It pos < K return K th smallest (arr [1 ... pos 1], k)
7. It pos > k return kth smallest (arr [pos + 1...r], k - pos + 1-1)
Q 57. Differentiate Time complexity from Space complexity.

(PTU, Dec. 2019, 2015)
Ans.

Q 58. State the principle of Substitution method. (PTU, pec. 2015)
toprov08 8U^8^fu*’on meth°d, we guess a bound and then use the mathematical induction 
method °Ur 9UeSS correct There are two stePs solving the recurrences by the substitution

Time complexity Space Complexity
1. Time complexity refers to the amount 

of time spent by the processor for the 
completion of the task.

2. The total number of steps involved in a 
solution to solve a problem is the 
function of the size of the problem, 
which is the measure of that problem’s 
time complexity.

3. Time complexity estimation is based on 
execution time.

1. Space complexity refers to the amount 
of memory occupied by a specific 
process or task.

2. Space complexity is measured by using 
polynomial amounts of memory, with an 
infinite amount of time.

3. Space complexity estimation is based 
on memory space.

1’ Guess the form of the solution.

Introduction 23
2. Using the mathematical induction to find the constants and show that the solution 

works.
The substitution method can be used to establish either upper or lower bounds on a 

recurrences. This method is powerful, but it can be applied only in cases, when it is easy to 
guess the form of the answer.

Q 59. Algorithm A performs 10n2 basic operations, and algorithm B performs 300 
logn basic operations. For what value of N does algorithm B start to show its better 
performance ?

(PTU, Dec. 2016)
Ans. 10n2 > 300 logn

300
n2 > yy logn n > V30

n2 > 30 logn n > 5
n2 > 30

Q 60. State valid shift with reference to string matching. (PTU, May 2017)
Ans. We formalize the string matching problem as follows : We assume that the text is 

an array T[1..n] of length n and that the pattern is an array P (1..m). We further assume that 
the elements of P and T are characters drawn from a finite alphabet L For example, we may 
have L = {0, 1} or Z = (a, b, .... z). The character arrays P and T are often called string of
characters. We say that pattern P occurs with shift s in text T. lf0<S^n-m and T [S+1. 
S+m] = P[1 ..m]. If P occurs with shift S in T, then we call s as valid shift otherwise we call s as 
an invalid shift.

Q 61. What do you mean by integer arithmetic? (PTU, Dec. 2018)
Ans. Integer arithmetic means arithmetic without fractions. A computer performing integer 

arithmetic ignores any fractions that are derived. For example, 8 divided by 3 would yield the 
whole number 2.

Q 62. What is order statistics ? (PTU, May 2019)
Ans. Order statistics are sample values placed in ascending order. The study of order 

statistic deals with the applications of there order values and their functions.
Q 63. Take the following list of functions and arrange them in ascending order of 

growth rate. That is, if function g(n) immediately follows function f(n) in your list, then 
it should be the case that f(n) is O(g (n)).

Mn) = n25, f2 (n) = V2n »t3(n) = n + 10, f4(n) = 10", f5(n) = 100" and fs(n) = n2logn. 
(PTU, May 2019)

Ans. We can start approching this problem by putting f4 and f5 at the end of the list, 
because these functions are exponential and will grow the fastest. f4 < f5 because 10 < 1000. 

Other four functions are polynomial and will grow slower than exponential. We can 

represnt f, and f2 as n2 5 = n2 x 72n » and ^2n = 2n°5- Now- we can saY that oul of a,! 

polynomial function f2 will be the slowest because it has the smallest degree. Moreover, and
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□ □□5

f = Q(g) because. 
n! > Zn for p (n > 4).Iti —n _ , ,

Hence. f(n) = n! and g(n) = 2n indicates f = Q(g).
0 65. Use the substitution method to prove a tight asymptotic lower bound 

(Q - notation) on the solution to the recurrence.

24--------------------—-------- of 1. Furthermore, f, and f6 will be
will be bounded by f3 because it has * and f3, because polynomial function grow
between exponent f4 and f5 and gst degree of 2 out of all other polynomial functions
slower and both f4 and f5 and have and = r2 and log (n) = O( 72n ).
and I, '•

Thereto" « «"«<
f2(n)<f3W < y indicate whether f=O(g), or f=n(g), or both (f=0(g)). 

Q64.lf f(n)=n! and g(n)=2n, more (PTU,

Ans. If f(n) = n! and g(n) = 2n.

Then

Hence,
Q 65.

T(n) = 4T (n/2) ♦ n1 2 * t (PTU, Dec. 2019)
Ans. Let T(n) = R(n). na, substitute this value into the original recurrence

R(n).n“ = 4(n/2)a R(n/2) + n2
Put a = 2, so as to cancel out the multiplicative factor of 4

n2 R(n) = 4(n2/4) R (n/2) + n2
n2R(n) = n2 R(n/2) + n2

Dividing through by n“ = n2, we have
R(n) = n2 R(n/2) + 1

Since R(n) Z0 (logn), thus
T(n) = R(n).nu {a = 2}
T(n) = R(n). n2

T(n) L0(n2logn).

4

Chapter

Fundamental Algorithmic Strategies

POINTS TO REMEMBER K4

Contents
Brute-Force, Greedy, Dynamic Programming, Branch and Bound and Backtracking 
methodologies for the design of algorithms; Illustrations of these techniques for 
Problem-Solving : Bin Packing, Knap Sack, TSP.

1 Divide and conquer is a top-down technique for designing algorithms

2. Divide and conquer solve the sub-problem recursively (successively and independently)

3. The divide and conquer paradigm consists of three steps at each level of recursion :

(i) Divide

(ii) Conquer

(iii) Combine
4. Mergesort and quick sort are examples of divide and conquer technique.

5. the merge sort splits the list to be sorted into 2 equal halves and placed them in separated 
array.

6. Quick sort is divide and conquer strategy that works by partitioning its input elements 
according to their value relative to some preselected element (pivot).

7. The idea of the dynamic programming developed by Richard Bellman.

8. Dynamic programming is a technique for solving problems with overlapping subproblems.

9. Dynamic programming is an algorithm design method that can be used when a solution
to the problem is viewed as the result of sequence of decisions.

10. Knapsack problem is an example of dynamic programming.

11. Dynamic programming is an Bottom-up approach.

12. Greedy algorithm is an Top-down approach
13. A greedy algorithm is a method for finding a optimal solution to some problem involving 

large, homogeneous data structure (array, tree, graph).

14. Time complexity of traveling salesman problem is O(n2 2n).

15. Space Complexity of traveling salesman problem is O(n 2n).
16. The searching problem deals with finding a given value, called a search key. in a given set.

25
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QUESTION-ANSWERS

27.
28.
29.
30.
31.

22.
23
24.
25.

Q 1. What are algorithm design techniques?
Ans. Algorithm design techniques (or strategies or paradigm) are general approaches 

to solving problems algorithmatically, applicable to a variety of problems from different areas 
of computing.

General design techniques are :
1. Brute force

LORD^ Design & Analysis of Algorithms

17~The sorting problem asks us to rearrange the items of a given list in ascending order (or

descending order).18 Binary search is a technique for searching an ordered list m which we first check the 
middle item and based on that comparison - discard half the data The same procedure 
is then applied to the remaining half until a match is found or there are no more item left

19 The worst-case complexity of binary search is O(lg n).
20. The average-case complexity of binary search is O(lg n).
21 A bubble sort compares two values next to each other and exchange them if necessary 

to put them in the right order.Bubble sort complexity is O(n2) and only suitable to sort array with small size of data

Complexity of merge sort is O(n* log (n)).
Redix sort is also known as postal sort, bin sort.
A heap is a complete binary tree in which each node satisfies the heap condition

26 There are two types of heap or heap tree. These are :

(i) Maxheap
(ii) Minheap
Maxheap is also called descending heap.
Minheap is also called ascending heap.
The complexity of heap sort is O(n* log (n)).
Outsort is similar to mergesort : divide-and-conquer recursive algorithm ... Quick sort executes m O(n log n) on average, and O(n’) in the worst-case'

32. A lower bound of a problem is the least time complexity required for anv aloorithm k ■can be used to solve this problem. M ror any algorithm which

□ 'Worst case lower bound
□ Average case lower bound.

33. The selection problem can be solved in O(n log n) tifne.

2. Divide and conquer
3. Decrease and conquer
4. Transform and conquer
5. Greedy technique
6. Dynamic programming
7. Backtracking
8. Branch and bound
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Q 2. Give brief concept of divide and conquer.

(PTU, Dec. 2016 ; May 2019, 2018, 2013)
Ans. Divide and conquer is an important general technique for designing algorithms .
1. Divide instance of problem into two or more smaller instances.
2. Solve smaller instances recursively.
3. Obtain solution to original (larger) instance by combining these solutions.

Divide and Conquer Examples
Sorting : Merge sort and quicksort
Q 3. Explain how analysis of linear search is done with a suitable illustration.

(PTU, Dec. 2014)
Ans. Count how many times the key is compared to an array element.
Best case : The key is the first element in the array. Number of comparisons of an 

array element to the key : 1 =0(1)
Worst case : The key is the last element in the array or the key is not in the array. 
Number of comparisons : n = O(n)
Average case : The key is equally likely to be in any position in the array. 
If the key is in the first array position : 1 comparison 
If the key is in the second array position : 2 comparison

If the key is in the ith position : i comparisons

So average all these possibilities : (1+2+3+. . . +n)/n = 
[n(n+1)/2]/n = (n+1)/2 comparisons
The average number of comparisons is (n+1)/2 = O(n).
Q 4. Define merge sort.
Ans. Merge sort is a perfect example of a successful application of the divide and
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conquer technique. It sorts a given array A[0 n-1] by dividing it into two halves A [0.....
fn/2] - 1] and A[[n/2] n-1], sorting each of them recursively, and then merging the two 

smaller sorted arrays into a single sorted one.
Q 5. What is the working principle of Mergesort?
Ans. Using divide-and-conquer, we can obtain a merge sort algorithm. 
Divide : Divide the n-elements into two subsequences of n/2 elements each. 

Conquer : Sort the two subsequences recursively. 
Combine : Merge the two sorted subsequences to produce the sorted answer.

Example :
18 3 2 9 7
L__^

1 5 4 |

| 8 3 2 o| 

| 8 3 || 2 9 |

i7,15,4

0000 0000
1 3 8| | 29]

1 2389 1 1 457 |

—V_____z.
I 1 2 3 4 5 7 8 9 |

Q 6. What is quick sort?
Ans. Quick sort is divide and conquer strategy that works by partitioning if s input elements 

according to their value relative to some preselected element (pivot). It uses recursion and 

the method is also called partition-exchange sort.

Q 7. Define dynamic programming.
Ans. Dynamic programming : Dynamic programming is an algorithm design method 

that can be used when a solution to* the problem is viewed as the result of sequence of 

decisions. It is technique for solving problems with overlapping subproblems.

Q 8. What are the features of dynamic programming?
Ans. 1 Optimal solutions to sub problems are retained so as to avoid recomputing of 

their values
2- Dectsion sequences containing subsequences that are sub optimal are not considered.

3- ft definitely gives the optimal solution always.
Q 9- Write the general procedure of dynamic programming.

, Ans-The development of dynamic programming algorithm can be broken into a sequence 

*** steps.
^^araaerize the structure of an optimal solution.

define the value of the optimal solution.
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3. Compute the value of an optimal solution in the bottom-up fashion ~
4. Construct an optimal solution from the computed information.

Q 10. What are the drawbacks of dynamic programming?
Ans. 1. Time and space requirements are high, since storage is needed tor all level
2. Optimality should be checked at all levels.

Q 11. Define principle of optimality. (PTU, Dec. 2016)
Ans. Principle of optimality : It states that an optimal sequence of decisions has the 

property that whenever the initial stage or decisions must constitute an optimal sequence 
with regard to stage resulting from the first decision

Q 12. Give an example of dynamic programming.
(PTU, May 2018 ; Dec. 2018, 2007) 

Ans. An example of dynamic programming is knapsack problem. The solution to the 
knapsack problem can be viewed as a result of sequence of decisions. We have to decide the 
value of Xi for 1 < i < n. First we make a decision on X1 and then on X2 and so on. An optimal 
sequence of decisions maximizes the object function Spixi.

Q 13. Explain optimal binary search trees. 
Ans. One of the principal application of binary search tree is to implement the operation 

of searching. If probabilities of searching for elements of a set are known, rt is natural to pose 
a question about an optimal binary search tree for which the average number of comparisons 
in a search is the smallest possible.

Q 14. Define “0-1 knapsack problem.”
Ans. Items are indivisible, you either take an item or not. Given a knapsack with maximum 

capacity W, and a set S consisting of n items. Each item i has some weight w, and benefit 

value bj (all w, and W are integer values). Problem is to find max £ b, subject to £ w, < W 

ieT ,eT

The problem is called a “0-1" problem because each item must be entirety accepted or 

rejected.
Q 15. How to find actual knapsack item? 
Ans. Firstly all of the information we need is in the table. 
V[n W] is the maximum value of items that can be placed in the knapsack

Let i = n and K = W
if V[i, K] * V [j - 1, K] then
mark the i* item as in the knapsack i = i- 1, K = K-wi

else i = i - 1 
Q 16. Write th. 0-1 knapMck aaonihm .nd am. M the ™nnlng Um. of <h»

algorithm.
Ans. For w = 0 to W

V(0, w) = 0
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else
V[i, w] = V[i - 1. w]
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for i = 1 to n
Vfi, 0] = 0

for i = 1 to n
for w = 0 to W 

' * i can be part of the solution 

. w wi] > Vfi - 1, w]
Vfi. w] = bi + Vfi - 1, w - wi]

X

/ 
I

if wi < = w // item i 
if bi + Vfi - 1-w ”'

eisc? Vfi, w] = Vfi - 1, w] //wi > w
Running time = 0 (n * W)
Q 17. Solve following knapsack 01 problem 
n = 4 (number of elements)
W = 5 (max weight)
Elements(weight, benefit) : (2, 3), (3, 4), (4, 5), (5, 6)

Ans.
Step 1.

Step 2.

■/W 0 1 2 3 4 5

for w = 0 to W 
V [0,w] = 0

0 0 0 0 0 0

i/w 0 1 2 3 4 -

for 1 = 1 to n

0 0 0 0 0 0

0

0

0

0

V [i, 0] = 0
i/W 0 1 2 3 4 5

0 0 J 0 0 0 0
0 ▼o
0

0

0

i= 1 
bi = 3 
wi = 2 
w=1 
w-wi = -1

(PTU, Dec. 2019, 2014)

o
iAA/ 0 1 2 3 4 5

0 0 0 0 0 0

1 0 o' *3 I ■ 1 
bl e 3

2 0 wi* 2

3 0 w ■ 2 
w-wi =

4 0

1 = 1 
bi = 3 
wi = 2 
w = 3 
w-wi = 1

•l/w 012 3 4 5
0 0 N^0 0 0

0 0 3 3^ *3

0

0

0

i = 1 
bi = 3 
wi = 2 
w = 5 
w-wi = 3

,/W 0 1 2 3 4 5
0 0 0 0 0 0
0 0 3 3 3 3
0 °l 31 4I 4 7

0 0* 3’

0

i = 3 
bi = 5 
w» = 4

i/W 012 3 4 5
0 0 0 0 0 0

0 1° 3 3 3 3

0 ▼o
0

0

j/W 01 2 3 4 5
0 0 0 0 0 0

0 0 3I 3 3 3

0 0 3’

0

0

i/W 0 ^ 2 3 4 5
0 0 0 0 0 0

0 0 3 3 3 3

0 0 3 4 4 2i

0 0 3 4 5 7’

0
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k]=7

Then

0 12 3 4 5

c-
1

2

3
4

0 0 0 0 0 0
i = 4 
k = 5 
bi = 6 
wi = 5 
Vp.k] = 7 
V[M.k] =

0 0 3 3 3 3

G 0 3. 4 4 7

0 0 3 4 5

0 0 3 4 5 0

the optimal knapsack 
should contain {1.2}

,/yy 012 3 4 5
0 0 ft 0 0 0

0 0 3
0 0 3

0 0 3 4 5 R

0 0 3 4 5

The optimal knapsack should 
contain {1,2}
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Q 18. What la greedy method? (PTU, Dec. 2016 ; May 2019. 2013)
Ana. Greedy method : Greedy method is the most important design technique, which 

makes a choice that looks best at that moment, A given ’n’ inputs are required us to obtain a 
subset that satisfies some constraints that is the feasible solution. A greedy method suggests 
that one can device an algorithm that works in stages considering one input at a time.

Q 19. Differentiate between dynamic programming and Greedy algorithms. 
(PTU, Dec. 2015)

Ans.
Dynamic Programming Greedy Algorithms

1. At each step, the choice is determined 
based on solutions of subproblems.

2. Sub-problems are solved first.

3. Bottom-up approach.
4. Can be slower, more complex.

1. At each step, we quickly make a choice 
that currently Iook3 best. It is a local 
optimal (greedy) choice

2. Greedy choice can be made first before 
solving further sub-problems

3. Top-down approach.
4 Usually faster, simpler.

Q 20. What are the steps for a developing a greedy algorithm?
(PTU, May 2019 ; Dec. 2016)

Ans. Steps for a developing a greedy algorithm are :
1. Feasible : Here we check whether it satisfies are possible constraints, not to obtain 

atleast one solution to our problems.
2. Local optimal choice : In this, the choice should be optimum which is selected from 

the currently available.
3. Unalterable : Once the decision is made at any subsequence step that option is not 

altered.

Q 21. Define feasible and optimal solution. (PTU, Dec. 2014)
Ans. Feasible solution : Given n inputs and we are required to form a subset such 

that it satisfies some given constraints then su^h a subset is called feasible solution.
Optimal solution : A feasible solution either maximizes or minimizes the given objective 

function is called as optimal solution.

Q 22. Write the control abstraction for greedy method.
Ans. Algorithm Greedy(a, n)
{
solution = 0 ;
for i = 1 to n do
{
x = select(a) ;
if feasible(solution, x) then
solution = Union(solution, x) ;
}
return solution ;
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A » A"-, 0P«™» 0 “ , ’“J" V t>P',mal Th.
h ‘"X b Xdy .lgor.bm depends on choices mad. so fa, bu, it can no, a.p.na „„ 

cho.ce mad by greedy g p lt progresses ln top down fe
any Mure cho.ces or on of greedy algorithm. (PTU>

a J To solve a problem in an optimal way construct the solut.on from given set of 
As the algorithm proceeds, two other sets get accumulated among this one set 

contains the candidates that have been already considered and chosen while the other set 
contains the candidates that have been considered but rejected.

Q 25 Let S = {a, b, c, d, e, f, g} denote a set of objects with weights and benefits 
as given in the table below. What is an optimal solution to the fractional knapsack 
problem for S assuming that we have a sack that can hold objects with total weight

18?
/ Item A B C D E F G
I benefits 12 10 8 11 14 7 9

I Weight (Kg) 4 6 5 7 3 1 6

Carrying capacity W = 18 Kg.
Ans. First we must calculate the “value” for the each items, which is defined as value = 

benefits/weights.
So,

Item I A B C D E F G
benefits 12 10 8 11 14 7 9

Weight 4 6 5 7 3 1 6
I Value

3 1.67 1.6 1.57 4.67 7 1.5

Now sort this table according to the decreasing value

Initially

Item F E A B C D G
benefits 7 14 12 10 8 11 9
Weight 1 3 4 6 5 7 6
Value 7 4.67 3 1.67 1.6 1.57 1.5

Knapsack W=18
Weight = 0 
benefit = 0

I Item F E A B C D G
1 benefits 1 14 12 10 8 11 9
I Weight 1 3 4 6 5 7 6
(Value 7 4.67 3 1.67 1.6 1.57 1.5

W=18

W= 18
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Now select next maximum valued item ‘E’, Here (Weight + w(E]) < W
Put whole item *E’ into knapsack. Add weight[E] with weight and benefit(E] with benefit. 
So, Knapsack l _____________ j W = 18

Weight =1 +3 = 4
benefits = 7 + 14 = 21

Now select maximum valued item *F’, Here (Weight + w[F}) < W
Put whole item ‘F’ into knapsack. Add weight[F] with weight and benefit IF! with 
So, Knapsack

Weight = 1
benefits = 7

Item u E A B C D \ G \
benefits 7 14 12 10 8 11 IWeight 1 3 4 6 5 pH I 6 IValue 7 4.67 3 1.67 | 1.6

| 1.57 L?-51

Item F E A B C D G I
benefits 7 14 12 10 8 11
Weight 1 3 4 6 5 7
Value 7 4.67 3 1.67 LA 1.57 LAI
Now select next maximum value item ‘A’, Here (weight + w[A])<= W
Put whole item ‘A’ into knapsack. Add weight[A] with weight and benefit[A] with benefit.
So, Knapsack i f.ea____________ j w = 18

Weight = 1 + 3 + 4 = 8
benefits = 7 + 14 + 12 = 33

Item F E A B C D G
benefits 7 14 12 10 8 11 9 •
Weight 1 3 4 6 5 7 6
Value 7 4.67 3 1.67

J L6
1.57 1.5

Now select next maximum valued item ‘B’, here (weight + w[B]) <= W. 
Put whole item ‘B’ into knapsack. Add weight[B] with weight and benefit[B] with bene

So, Knapsack i FE^a.8____________ I W = 18
Weight =1 + 3 + 4 + 6 = 14
benefits = 7 + 14 + 12 + 10 = 43

Item 'F E A B C D G

benefits 7 14 12 10 8 11 9

Weight 1 3 4 6 5 7 6

Value 7 4.67 3 1.67 1.6 1.57 1.5
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(Weight + w[CJ) <=W. Put whole item 
follows :
-14 = 4

Put whole item ‘B’ into knapsack
Knapsack i-----------------eeabc------------------- i w = 18

Weight = W = 18
benefits = 7+14+12+10 + (needed weight)*
Value [C] = 43 + (4 *1.6) = 43 + 6.4 = 49.4 

~ > - ■ i -
Item F E A B C D G

benefits 7 14 12 10 8 11 9

Weight 1 3 4 6 5 7 6

Value 7 4.67 3 1.67 1.6 1.57 1.5

Remaining items D.G could not put into knapsack (bag) because bag is full i.e.

weight = W
Knapsack = |__________ f.eabc___________ I
Weight in Bag = W= 18
Benefits = Rs 49.4

Q 26. Write the algorithm for fractional knapsack problem.
Ans. Fractional knapsack problem :
Greedy-fractional-knapsack(ltem[n], w[ ] , b[ ], W)
{
Knap = 0
Weight = 0
Benefit = 0
for each item i
v[i] = bp]/w[i]
while(weight < = W)
{
i = Extract item of maximum value from list
if(weight + w[i] < W)
{
knap = knap U item[i]
weight = weight + w[i]
benefit = benefit + v[i]

else
{ »
knaP = knap U itemfi]
weight = w

36 _________________________________________
Now select next maximum valued item ‘C’, Here 

‘B’ into knapsack. And calculate weight and benefit as 
needed weight= W - Weight =18
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benefit = (W - weight) * vfi) / w(i]
)
}
return x
}

Q 27. Explain traveling salesman problem.
Ans. In traveling salesman problem a salesman has to travel n cities starting from any 

one of the cities and visit the remaining cities exactly once and come back to the city where 
he started his journey in such a manner that either the distance is minimum or cost is minimum. 
This is known as traveling salesman problem.

Q 28. Write some applications of traveling salesman problem. 
Ans. 1. Routing a postal van to pick up mail from boxes located at n different sites.
2. Using a robot arm to tighten the nuts on some piece of machinery on an assembly 

line.
3. Production environment in which several commodities are manufactured on the same 

set of machines.

Q 29. Give the time and space complexity of traveling salesman problem. 
Aris. Time Complexity : O(n2 2n)
Space Complexity : O(n 2n)

Q 30. What is Greedy method? State and write algorithm for Knapsack problem 
using Greedy method. (PTU, Dec. 2018, 2011 ; May 2017, 2008)

Ans. Greedy method is a method of choosing a subset of the dataset as the solution 
set that results in some profit. Consider a problem having n injputs, we are required to obtain 
the solution which is a series of subsets that satisfy some constraints or conditions. Any 
subset, which satisfies these constraints, is called a feasible solution. It is required to obtain 
the feasible solution that maximizes or minimizes the objective function. This feasible solution 
finally obtained is called optimal solution.

If one can devise an algorithm that works in stages, considering one input at a time and 
at each stage, a decision is taken on whether the data chosen results with an optimal solution 
or not. If the inclusion of a particular data results with an optimal solution, then the data is 
added into the partial solution set. On the other hand, if the inclusion of that data results with 
infeasible solution then the data is eliminated from the solution set.

Knapsack problem
 Input : n objects and a knapsack
 Each object I has a weight wi and the knapsack has a capacity m 
 A fraction of an object xi, 0 <> xi < 1 yields a profit of pi.xi 
 Objective is to obtain a filling that maximizes the profit, under the weight constraint 

of m
 Formally,
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< m

□

□

□

□
□

Maximize Xi=ipi’Xi

subject to ^Li=iW’ X| 

andO^x^U
and Each pj > C —

: n
0 and Wj > 0

Problems instance : n = 3, m = 20, P = (25, 25, 15) and W = (18, 15, 10). 
Greedy strategy 1 : Pick items with maximum profit per item.

Solution. (1,2/15, 0). Profit : 28.2
Greedy strategy 2 : Pick as many items as possible (smallest weight items first).

Solution. (0. 2/3, 1). Profit: 31
Greedy strategy 3 : Pick items with maximum profit per unit weight.

Solution. (0, 1, 1/2). Profit : 31.5
items considered in the objective function : total profit, capacity used, and ratio of 

accumulated profit to capacity used
Algorithm
void g reedy -knapsack (m, n)
{ . ' 
// Solution vector is x [i], 0 <= i < n
for (i = 0 ; i < n I i ++)
x [i] = 0.0 ;
U = m //Unused capacity
for (i = 0 ; (i < n) && (w [i] <= U); i++)
{

U = U - w [i];
}
if (i < n)
x[i] = U/w[i];
}
Q 31. Does greedy algorithm always give an optimal solution? Give arguments 

to support your answer. (PTU, May 2013, 2009)
Ans. A greedy algorithm always makes a locally optimal choice in the hope that this 

er?'?6 'ead t0 a 9'°bally optimal solution. Greedy algorithms do not always yield optimal 
toes” J80™ P'Obtems are efflclenl

problems hav^nin^o^8 &re typ,caHy used t0 so,ve optimization problem. Most of these 

subset that satisfies th require us obta’n a subset that satisfies some constraints. Any 
feasible solution that elther^m8^1018 CaHed 3 feas,ble so,Llt'on- We are required to find a 
common situation we m,nirn,Zes or maximizes a given objective function. In the most
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□ C : A set (or list) of cnridldoUt* ,/-

□ s : The set of candidate* fh*f h#/4 444* //>
□ feasible () : A function that 4 * vv + * ,,,
□ solution () : A function flint 4 * W yws, * ■/,
□ select () : A function for choo*«hg rr/4* pf'Z'W'ig
□ An objective function that we are trying tc

Example . Coin change
□ We want to give change to a customer using the ernaXe*/

(of units 1, 5, 10, and 25, reap,).
□ Greedy algorithm will always find the optimal solution in this ce^
□ If 12-unit coins are added, it will not necessarily find the optimal scbZzz

e.g. = 15 = (12, 1, 1), (10, 5) is optimal.
□ Greedy method might even fail to find a solution despite the fact that r* 

(Consider coins of 2. 3 and 5 units).
e.g. 6 = 5 + ? (3, 3) is optimal

Q 32. Let n = 4 (P^ P2, P3, P4) = (100, 10, 15, 27) and (dv d2, d^ d4) = (2,1, 2. 
where Pi and profits on processes or job and di are deadline of completion. Find out 
the optimal schedule. (PTU, Dec. 2005)

Ans.
S.No. Feasible

Soluton
Processing
Sequence

Value

1. (1. 2) (2, 1) 110
2. (1. 3) (1, 3) or (3, 1) 115
3. (1. 4) (4, 1) 127
4. (2, 3) (2, 3) 25
5. (3, 4) (4, 3) 42
6. (D 1 100
7. (2) 2 10
8. (3) 3 15

9. (4) 4 27

Thus, the optimal solution s solution 3 (i.e. 127) with schedule (4, 1) and profit 127.

Q 33. Consider four items along with their respective weights and values
I = <11, I2, I3, I4>
w = <7, 3, 4, 5>
v = <49, 12, 42, 30>
The capacity of the knapsack W = 10. Find the solution for the fractional knapsack 

problem using greedy method. (PTU, May 2012)
Ans. This is fractional knapsack problem. The item can be selected fractionally. First of 

all we will obtain value to weight ratio and arrange the item in non increasing order.
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Weight

To fulfill the capacity W = 10 we will have

□ add item of weight 4
□ select item of weight 7 and take its fractional 617 weight 

/. Weights of selected items
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Value- Value to weight

#42 iol “ -

$49 7

$30 * 6

$12 4

g4 + 7 x y = 10 which fits into the knapsack

Hence, the profit obtained will be

642 + 49 x ~ = 42 + 42 = $84

This is an optimal solution to given instance of knapsack.

Q 34. Differentiate between dynamic programming and divide and conquer 
technique. (PTU, Dec. 2005)

Ans. 1. Both solve a problem through combining the solutions of the subproblems.
2. Subproblem independence (YES for Divide and Conquer, NO for Dynamic Programming).
3. Divide and conquer does more work than necessary by solving the common 

subproblems, while DP solves each subproblem just once and saves the solution in a table.

Q 35. What is the working principle of quicksort? (PTU, May 2012)
Ans. Quicksort also called partition exchange sort, designed to improve and resolve 

the deficiencies of the selection sort. The quicksort is based on three main strategies :
(a) Split (divide) the array into small subarrays.
(b) Sort the subarrays.
(c) Merge (join/concatenate) the sorted subarrays.

Q 36. Differentiate between top down and bottom up approaches.
(PTU, May 2010 ; Dec. 2008)

Ans. A top-down approach (also known as step-wise design) is essentially the breaking 
down of a system to gain insight into its compositional sub-systems. In a top-down approach 

an overview of the system is formulated, specifying but not detailing any first-level subsystems. 
Each subsystem is then refined in yet greater detail, sometimes in many additional subsystem 
levels, until the entire specification is reduced to base elements. A top-down model is often 
specified with the assistance of ‘black boxes’, these make it easier to manipulate. However, 
black boxes may fail to elucidate elementary mechanisms or be detailed enough to realistically 
validate the model.

A bottom-up approach is the piecing together of systems to give rise to grander systems, 
thus making the original systems sub-systems of the emergent system. In a bottom-up

where A = (PTU, Dec. 2007)

3x2

1.
2.
3.
4.

approach the individual base elements of the system are firsTspecif -------- ____ 41
elements are then linked together to form larger subsystems which d » 9r6at de^The~ 
sometimes in many levels, until a complete top-level system is for 'Urn are linked

resembles a ‘seed’ model, whereby the beginnings are small but evem^iij^ S,rate9Y <”ten 

and completeness. However, ‘organic strategies’ may result in a tanoVT? 
subsystems, developed in isolation and subject to local optimization , 9te * elernents and 

global purpose. opposed t° meeting a

Q 37. What are Important characteristics of dynamic programming?

Ans. Important characteristics of dynamic programming • May 2012>

. The problem can be divided into stages with a decision reouired , Each stage has a number of states associated with it ®ach 8tage-

The decision at one stage transforms one state into a state in

5 ,he—- -1.
6. The final stage must be solvable by itself.

In rlX mU',IP"",IOn ”9Ormm A - B

7 10
1 2 3

and 8 11
4 5 0 2x3 9 12

Ans. The multiplication of A and B is defined as

"7 10" *

1 2 3 1x7 + 2x84-3x9 1x10 + 2x11 + 3x12
* 8 11

4 5 6 4x7 + 5x8 + 6x9 4x10 + 5x11 + 6x12
9 12

AxB =C
2x3*3x2 =2x2

Therefore when we multiply a matrix whose order is 2 x 3 to matrix 3x2 then we get 
order 2 x 2 of the resultant matrix.

Algorithm : Matrix multiplication (A, B)
1. If cal [A] * row [Bl
2. then error "can’t be multiply"
3. else for i <- 1 to row [A] (P)
4. do for j <— 1 to cal [B] (r)
5. do C (I, j] <- 0
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6. for K 1 to cal [A] [q]
7. do C [i, j] <- C [i, j] + A (i, K]4 B [K, j]

8. return C [i, j]
Therefore, AixK * BK*j = ci*i
q 39. What are the advantages of dynamic programming over the greedy method?

(PTU, May 2007)

OR
• • hogpen areedy and dynamic programming method of problem 

Differentiate between g (PTU>

' S°/V Ans Greedy vs. Dynamic Programming :
□ Both techniques are optimization techniques, and both build solutions from a 

collection of choices of individual elements.
□ The greedy method computes its solution by making its choices in a serial forward 

fashion, never looking back or revising previous choices.
□ Dynamic programming computes its solution bottom up by synthesizing them from 

smaller subsolutions, and by trying many possibilities and choices before it arrives.

at the optimal set of choices.
□ There is no a prior litmus test by which one can tell if the Greedy method will lead to

an optimal solution.
□ By contrast, there is a litmus test for Dynamic Programming, called The Principle of 

Optimality.
Q 40. Find the shortest path from node 1 to all vertices of the graph given below.

Show all the intermediate steps. The numbers on the edges are the weights.
(PTU, Dec. 2008)

Ans. Given a weighted connected graph (undirected or directed), the all pairs shortest 
paths problem asks to find the distances (the lengths of the shortest path) from each vertex 

to all other vertices.

Q 41. Describe the dynamic programming algorithm for computing the minimum 
5ost. (PTU, May 2010)

Ans. A Dynamic Programming Algorithm : To begin, let’s assume that all we really 

vant to know is the minimum cost, or minimum number of arithmetic operations, needed to 

nultiply out of the matrices. If we’re only multiplying two matrices, there’s only one way to 
nultiply them, so the minimum cost is the cost of doing this. In general, we can find the 
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minimum cost using the following recursive algorithm :
□ Take the sequence of matrices and separate it into two subsequences.
□ Find the minimum cost of multiplying out each subsequence.
□ Add these costs together, and add in the cost of multiplying the two result matrices.
□ Do this for each possible position at which the sequence of matrices can be split, 

and take the minimum over all of them.
For example, if we have four matrices ABCD, we compute the cost required to find each 

of (A) (BCD), (AB) (CD), and (ABC) (D), making recursive calls to find the minimum cost to 
compute ABC, AB, CD, and BCD. We then choose the best one Better still, this yields not 
only the minimum cost, but also demonstrates the best way of doing the multiplication : just 
group it the way that yields the lowest total cost, and do the same for each factor 

Unfortunately, if we implement this algorithm we discover that its just as slow as the 
naive way of trying all permutations’ What went wrong? The answer is that we’re doing a log 
of redundant work. For example, above we made a recursive call to find the best cost for 
computing both ABC and AB. But finding the best cost for computing ABC also requires 
finding the best cost for AB. As the recursion grows deeper, more and more of this type of 
unnecessary repetition occurs.

One simple solution is called memorization : each time we compute the minimum cost 
needed to multiply out a specific subsequence, we save it. If we are ever asked to compute it 
again, we simply give the saved answer, and do not recomputed it. Since, there are about n2/ 
2 different subsequences, where n is the number of matrices, the space required to do this is 
reasonable. It can be shown that this simple trick brings the runtime down to O (n3) from O 
(2n), which is more than efficient enough for real applications. This is top-down dynamic 
programming.

Q 42. Solve all pair shortest path problem by using dynamic programming.
(PTU. May 2011)

Ans. When a weighted graph, represented by its weight matrix W the objective is to find 
the distance between every pair of nodes.

‘ We will apply dynamic programming to solve all pairs shortest path.

Step 1. We will decompose the given problem into subproblems. Let be the length

of shortest path from node i to node f such that the label for every intermediate node will be 
< = K. We will compute AK for K = 1 .... n for n nodes.

Step 2. For solving all pair shortest path, the principle of optimality is used. That means 
any subpath of shortest. Path is a shortest path between the end nodes. Divide the path from 
i node to j node for every intermediate node, say ‘K’. Then there arises two cases.

(i) Path going from i to j via K.
(ii) Path which is not going via K. Select only shortest path from two cases.
Step 3. The shortest path can be computed using bottom up computation method 

following is recursion method.

Initially : A° = W [i, j]
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min ■ A(i,k) Vj)}'

hV dynamic programming? Explain all pair shortest
- — ole (PTU, May 2007)

path problem with' «“^Pand computer science, dynamic programming is a method for 

tLT oroblems by breaking them down into simpler subproblems. It is applicable 
S°IVX^xhibrting the properties of overlapping subproblems which are only slightly smaller 
Ind^mal substructure (described below). When applicable, the method takes far less time 

than naive methods.
The key idea behind dynamic programming is quite simple. In general, to solve a given 

problem, we need to solve different parts of the problem (subproblems), then combine the 
solutions of the subproblems to reach an overall solution. Often, many of these subproblems 
are really the same. The dynamic programming approach seeks to solve each subproblem 
only once, thus reducing the number of computations. This is especially useful when the 

number of repeating subproblems is exponentially large.
Top-down dynamic programming simply means storing the results of certain calculations, 

which are later used again since the completed calculation is a sub-problem of a larger 
calculation. Bottom-up dynamic programming involves formulating a complex calculation as 

a recursive series of simpler calculations.
All-pairs shortest path problem : The all-pairs shortest path problem can be considered 

the mother of all routing problems. It aims to compute the shortet path from each vertex v to 
every other u. Using standard single-source algorithms, you can expect to get a naive 
implementation of O (n A 3) if you use Dijkstra for example - i.e. running a O (n A 2) process 
n times. Likewise, if you use the Bellman-Ford-Moore algorithm on a dense graph, it’ll take 
about O (n A 4), but handle negative arc-lengths too.

Storing all the paths explicity can be very memory expensive indeed, as you need one 
spanning tree for each vertex. This is often impractical in terms of memory consumption, so 
these are usually considered as all-pairs shortest distance problems, which aim to find just 
the distance from each to each node to another.

The result of this operation is an n*n matrix, which stores estimated distances to the 
each node. This has many problems when the matrix get too big, as the algorithm will scale 
very poorly.

Q 44. Compute all pair shortest path for the following graph. (PTU, Dec. 2004)

44_____________________

Next computations :

Ak(..i) =

Q 43. What do you mean

Fundamental Algorithmic Strategies
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Ans.

12 3n

1 0 4 15
A° = „

2 8 0 2

3 3 co 0

1 2 3

1 0
A1 = 2 8 

3[3

4 15

0 2
(7) 0

min (oo, (3+4))

"1 2 3n

1 0 4 (§>

A2 = 2 8 0 2

0

min (15, (4+2))

1 2 31

10 4 6 
A3 = 2 © 0 2

3 3 7 0

A3 gives shortest distances between any pair of vertices.

Q 45. What do you mean by dynamic programming? Explain assignment problem 
with example. (PTU, Dec. 2015 ; May 2009)

Ans. Dynamic programming is a method for solving complex problems by breaking 
them down into simpler subproblems. It is applicable to problems exhibiting the properties of 
overlapping subproblems which are only slightly smaller and optimal substructure (described 
below). When applicable, the method takes far less time than naive methods.

The key idea behind dynamic programming is quite simple. In general, to solve a given 
problem, we need to solve different parts of the problem (subproblems), then combine the 
solutions of the subproblems to reach an overall solutions. Often, many of these subproblems 
are really the same. The dynamic programming approach seeks to solve each sub problem 
only once, thus reducing the number of computations. This is especially useful when the 
number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain calculations, 
which are later again since the completed calculation is a sub-problem of a larger calculation. 
Bottom-up dynamic programming involves formulating a complex calculation as a recursive 

series of simpler calculations.
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Solution : In order to find the proper assignment we apply the Hungarian algorithm as 
blows

•» ““ ol doin9 a" ,heh'ol“ d"'8,e"' ™chines 
?“ XX «the -KK™™ • “* one ** be “B'9"ed ° °™ machlne

I, rXrfd l» a <—««« "» da,a “ 9,ve" 88 * m",h' Wh8'e ,o"8

» M> —> » machines and there are as many rows as rhe number of
XJ“ . rnXmter er Jeb. and number of machines shonid be equal

Example : Four persons A, B. C, and D are to be assigned four jobs I, II, III and IV. The 
cost matrix is given as under, find the proper assignment.

Man/Jobs A B C D

I 8 10 17 9
II 3 8 5 6
III 10 12 11 9
IV 6 13 9 7

1 (A) Row 'eduction
Man/Jobs A B C D

1 0 2 9 1
II 0 5 2 3
III 1 3 2 0
rv 0 7 3 1

I (B) Column reduction
Man/Jobs A B C D

1 0 0 7 1
II 0 3 0 < 3
III 1 1 0 0
rv 0 5 1 1

N (A/ and (B) zero aeotgnnnent

Man/jobs A e c D

1 X 0 7 1
II . X 3 0 3
Ill 1 1 X 0
r/ 5 1 1

Pigmental Algorithmic Strategies
- JTthisway all the zero’s are either crossed out or assigned. Also

- 4 (i e. number of rows or columns). Thus, the assignment is optimal.
From the table we get I -> B ; II -> C : III -> D and IV -» A.
q 46. What do you mean by dynamic programming? Explain with the help of 

suitable examples. (PTU, May 2019, 2015, 2013 ; Dec. 2011, 2010)
OR 

What is dynamic programming? How is this approach different from recursion? 
Explain. (PTU. 2018, 2013 ; May 2012)

Ans. Dynamic programming is a method for solving complex problems by breaking 
them down into simpler subproblems. It is applicable to problems exhibiting the properties of 
overlapping subproblems which are only slightly smaller and optimal substructure (described 
below). When applicable, the method takes far less time than naive methods. 

The key idea behind dynamic programming is quite simple. In general, to solve a gven 
problem, we need to solve different parts of the problem (subprobtems), then combine the 
solutions of the subproblems to reach an overall solutions. Often, many of these sutprcberB 
are really the same. The dynamic programming approach seeks to solve each sub problem 
only once, thus reducing the number of computations. This is especially useful when fre 
number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain caicutations 
which are later again since the completed calculation is a sub-problem of a larger cateutafcn. 
Bottom-up dynamic programming involves formulating a complex calculation as a recursive 
series of simpler calculations.

Difference Between DP and Recursion : The essential difference is the DP keeps as 
 Intermediate results where as recursion does not. This makes a huge difference to performance 

when a recursion function is called repeatedly with the same arguments, in fact dynamic 
programming is nothing more than recursion with the addition of a caching strategy. For the 
sequence comparison algorithm the caching strategy was to use a 2D array In other situations 
sparse arrays and hashing are more appropriate.

Q 47. What is swapping? Explain. (PTU, Dec. 2004)
Ans. To replace pages or segments of data in memory Swapping is a useful technique 

that enables a computer to execute programs and manipulate data files larger than main 

memory. The operating system copies as much data as possible into main memory and 
leaves the rest on the disk. When the operating system needs data from the disk, it exchanges 

a portion of data (called a page or segment) in main memory with a portion of data on the 
disk. DOS does not perform swapping, but most other operating system, including OS/2, 
Windows, and UNIX. do. Swapping is often called paging. In UNIX systems, swapping refers 
to moving entire processes in and out of main memory

Q 48. What is recursion? What are its drawbacks? (PTU, May 2007)
Ans. Recursion : Divide-and-conquer algorithms are naturally implemented as recursive 

procedures In that case, the partial subproblems leading to the one currently being solved 
are automatically stored in the procedure call stack.
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(PTU, May 2015)
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Q 49. State greedy strategy.Ans. □ The greedy strategy is an algorithm design technique

Like divide & ConquerThe greedy algorithms are used to solve optimization problems.

 The goal is to find the best solution
□ Works when the problem has the greedy choice property
A global optimum can be reached by making locally optimun choices.
We can also say that Greedy is a strategy that works well on optimization problems

with.the following charactenstics ;1. Greedy-choice property : A global optimum can be arrived at by selecting a local

optimum.2 Optimal substructure : An optical solution to the problem contains an optimal solution

to subproblems.Q 50. Discuss the use of D and C In quicksort algorithm. (PTU, May 2011) 
Ans. Quicksort is a divide and conquer sorting algorithm in which division is dynamically 

carried out (as opposed to static division in merge sort).
The three steps of quicksort are as follow :
Divide : Rearrange the elements and split the array into two sub-arrays and an element 

in between such that each element in the left subarray is less than or equal the middle 
element and each element in the right subarray is greater than the middle element. 

Conquer : Recursively sort the two subarrays.

Combine : None.
Algorithm
Quicksort (A. n)
1 ; Quicksort (A, 1, n)

Quicksort (A, P, r)
1 : if P > r then return
2 : q = partition (A, P, r)
3 : Quicksort (A, P, q - 1)
4 : Quicksort (A, q + 1, r).
Q 51. Write algorithm for travelling sales person problems using dynamic 

programming. (PTU, Dec. 2006)

Aos. Algorithm for travelling sales person problem :
Problem Description : Let G be directed graph denoted by (V, E) and where V denotes 

set of vertices and E denotes set of edges. The edges are given along with their cost Cy. The 
cost Cjj > 0 for all i and j. If there is no edge between i and j then Cy = co.

A tour for the graph should be such that all the vertices should be visited only once and 
cost of the tour is sum of cost of edges on the tour. The traveling sales person problem is to 
Hod the tour of minimum cost.

Dynamic programming is used to solve this problem.

Fundamental Algorithmic Strategies
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Step 1. Let the function C (1, V - (1)) is the total length of the tour terminate a77 
The objective of TSP problem is that the cost of thra tour shouW be mmimum 
Let d [i, j] be the shortest path between two vertices i and j.

Step 2. Let Vb V2 ... Vn be the sequence of vertices followed tn optimal lour. Then (V 
V2.......Vn) must be a shortest path from V, to Vn which passes through each
vertex exactly once.
Here the principle of optimality is used. The path Vp Vi>1.... V( must be optimal
for all paths beginning at V (i), ending at V (j), and passing through all the 
intermediate vertices {Vi+1 .... Vr1) once.

Step 3. Following formula can be used to obtain the optimum cost tour. 
Cost (i. j) = min (d (i, j] + cost (j, s - {j})} where j e S and i e S

Q 52. Write algorithm for quick sort using divide and conquer. What is divide and 
conquer algorithm? Use this algorithm to find the maximum and minimum from a given 
array. (PTU, Dec. 2018 ; May 2007)

Ans. Divide-and-conquer is a top-down technique for designing algorithms that consists of 
dividing the problem into smaller subproblems hoping that the solutions of the subprcbfems are 
easier to find and then composing the partial solutions into the solution of the onginal probtem 

Little more formally, divide-and-conquer paradigm consists of following major phases 
 Breaking the problem into several sub-problems that are similar to the original 

problem but smaller in size,
 Solve the sub-problem recursively (successively and independently), and then 
 Combine these solutions to subproblems to create a solution to the original problem 

Binary Search (Simplest application of divide-and-conquer)
Binary search is an extremely well-known instance of divide-and-conquer paradigm 

Given an ordered array of n elements, the basic idea of binary search is that for a given 
element we “probe” the middle element of the array. We continue in either the lower cr upper 
segment of the array, depending on the outcome of the probe until we reached the required 
(given) element.

Quick sort is a divide and conquer algorithm. Quick sort first divides a large list into two 
smaller sub-lists : the low elements and the high elements Quick sort can then recursively 
sort the sub-lists.

The steps are :
1. Pick an element, called a pivot, from the list.
2. Reorder the list so that all element with values less than the pivot come before the 

pivot, while all elements with values greater than the pivot come after it (equal values can go 
either away). After this partitioning, the pivot is in its final position. This is called the partition 

operation.
3. Recursively sort the sub-list of lesser elements and the sub-list of greater elements. 
The base case of the recursion are lists of size zero or one, which never need to be

sorted.
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Dec. 2Q14)
Bioinformatics

bound may be found. In many of these instances, dynamic programming will 
robust approach that can return the optimal solution.

Q 55. What are the applications of dynamic programming ? (PTU
Ans. 

- -------------------------7 7 TTTTn in desianing an algorithm.
Q 53. Explain the role of randomiza 2019, 2Q17 . 2Q16 2013)

■ is an akjorithm that employs a degree of randomness as
Ans. A randomized algo important role in the design of both sequential

part of its logic. Randomization has piayeo

and parallel algorithm ks of Greedy Algorithm ? (PTU, Dec. 2014)
° 54'^qreTdy approach does not always work because greedy algorithms only 

makeXly itLl choices This will often lead to a local maximum in the solution space 
ZnsnTthe^st solution In certain cases, you can give an upper bound for the worst 

lubon the greedy algorithm will return (e.g. O(k log n) for set cover), but in other cases, no 
801 y ‘ I be a more

 Control theory
 Information theory
 Operations research
 Computer Science : Theory, graphics, Al, systems,

Q 56. Define Brute force approach ? (PTU, Dec. 2014)
Ans. Brute force is a straight forward approach to solving a problem, usually directly 

>ased on'the problem statement and definitions of the concepts involved. The "force” implied 
y the strategy’s definition is that of a computer and not that of one's intellect, “just do it!” 
/ould be another way to describe the prescription of the brute-force approach. And often, the 
rute force strategy is indeed the one that is easiest to apply.

Q 57. Write a pseudo code for divide & conquer algorithm for merging two sorted 
rrays in to a single sorted one. Explain with example. (PTU, Dec. 2014)

Ans. Algorithm MergeSort(int A[0....n-1],low,high)
//Problem Description : This algorithm-is for sorting the elements using mergesort 
//Input . Array A of unsorted elements, low as beginning pointer of array A and high as 

id pointer of array A
//Output : Sorted array A[0....n-1]
if(low < high) then
{
mid <— (low + high)/2 //split the list at mid
MergeSort(A, low, mid) //first sublist
MergeSort(A,mid+1 ,high)//second sublist
Combine(A,low,mid,high)//merging of two sublists
}
Algorithm Combine (A[0....n-1], low, mid, high)
{
k *-low; //k as index for array temp

while (i< = mid and j < = high) do
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i +-low; //i as index for left sublist of array A 
j <—mid 4-1 //j as index for right sublist of array A. 
while fi< = :
{
if (A [i] < = A [j]) then
//if smaller element is present in left sublist
r

//copy that smaller elemet to temp array 

temp [k] <— A[i]

i <— i+1

k <—k+1
}
else //smaller element is present in right sublist 
{
//copy that smaller element to temp array

temp[k] <—A[j]

j <H+1

k <— k+1
}
}
//copy remaining elements of left sublist to temp 
while (i<=mid) do
{

temp[k] <—A[i]

i <—i+1

k <-k+1
}
//copy remaining elements of right sublist to temp 
while(j < = high)do
{

temp[k] <—A[j]

j<-j+1

k <-k+1

Consider that at some instance 
Array A (left sublist)

T
20 30 40 70

I

we have got two sublist 20,30,40.70 and 

Array A (right sublist)
10,50,60, then
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Initially k=0.
temp

K=i;n advanced later on

I J
i

NowK=2
2TV

L-
10 50 60

[20|30|«
!----- ------ T"

70 t

Then k will be incremented

10 50 60

J
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Q 58. Differentiate between optimization problem and decision problem.

(PTU, May 2015)
Ans. Optimization problem : The problem of finding the best solution from all feasible 

solutions is an optimization problem.
□ Optimization problem involves the identification of an optimal solution i.e. either 

maximum or minimum.
□ Similarly, an algorithm which is used to solve an optimization problem is called 

optimization algorithm.
□ Optimization problems have corresponding decision problems meaning that many 

optimization problems can be recast into decision problems that ask whether there 
is a feasible solution.

I
1

I

□ However, a decision problem can be solved in polynomial time if the optimization 
problem can.

□ Typically optimization problems can be solved using branch and bound. 
Decision problems :
□ Any problem for which the answer is either yes or no depending on the values of 

some input parameters is called a decision problem.
□ These input parameters can be natural numbers as well as strings of a formal 

language. Instead of yes/no sometimes is also uses I/O, success/failure, or true/
false as output.

□ Outputs of decision problems are Boolean.
□ An algorithm for solving a decision problem is termed as decision algorithm or 

procedure for that problem and the problem is then called decidable or effectively
solvable.

□ Typically decision problems can be solved using backtracking.

Q 59. Explain how you can use greedy technique for Huffman coding. 
(PTU, Dec. 2014)

Ans. According to Huffman algorithm, a bottom up tree is built starting from the leaves. 
Initially, there are n singleton trees in the forest, as each tree is a leaf. The greedy strategy 
first finds two trees having minimum frequency of occurrences. Then these two trees are 
merged in a single tree where the frequency of this tree is the total sum of two merged trees. 

The whole process is repeated, until there is only one tree in the forest
Let us consider a set of characters S = <a,b,c,d,e,f> with the frequency of occurrences 

P = <45,13,12,16,5I9>. Initially, these six characters with their frequencies are considered six 
singleton trees in the forest. The stepwise merging of these trees to a single tree is shown in 
figure below. The merging is done by selecting two trees with minimum frequencies, till there 

is only tree in the forest.

a 45 b 13 c 121 d 16 I e 5 19
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Stepwise merging of the singleton trees

Now, the left branch is assigned a code ‘O’, and right branch is assigned

hen,

code ‘V.
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The binary code word for a character is interpreted as path from the root to that character 
Hence, the codes for the characters are as follows

a - 0
b = 101
c = 100
d = 111
e = 1100
f = 1101

Therefore, it is seen that no code is the prefix of other code. Suppose we have a code 
01111001101, to decode the binary code word for a character. We traverse the tree. The first 
character is 0, and the character at which the tree traversal terminates is a. Then the next bit 
is 1 for which the tree is traversed right. Since, it has not reached at the leaf node, the tree is 
next traversed right for the next bit 1. Similarly, the tree is traversed for all the bits of the code 
string. When the tree traversal terminates at a leaf node, it again starts from the root for the 
next bit of the code string. The character string after decoding is ‘adcf

Q 60. What is dynamic programming technique ? How does it differ from divide 
and conquer technique ? (PTU, Dec. 2015)

Ans. Dynamic Programming : Refer to O.No. 46

Dynamic Programming Divide and conquer
1. In dynamic programming many 

decision sequences are generated and 
all the overlapping subinstances are 
considered.

1. The problem is divided into small 
subproblems. These subprobiems are 
solved independently. Finally all the 
solutions of subproblems are collected 
together to get the solution to the given 
problem.

2. In dynamic computing duplications in 
solutions is avoided totally.

2. In this method duplications in 
subsolutions are neglected, i.e. 
duplicate subsolutions may be 
obtained.

3. Dynamic programming is efficient than 

divide and conquer strategy.

3. Divide and conquer is less efficient 
because of rework on solutions.

4. Dynamic programming uses bottom up 
approach of problem solving (Iterative 

method)

4 The divide and conquer uses top down 
approach of problem solving (recursive 
methods).

5. Dynamic programming splits its input at 
every possible split points rather than 
at a particular point. After trying all split 

points it determines which split point is 

optimal.

5. Divide and conquer splits its input at 
specific deterministic points usually in 
the middle
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Q 61. What are the advantages of brute force technique ? (PTU, Dec. 2015) 
Ans. The various advantages of brute force technique are
1 Brute force applicable to a very wide variety of problems. It is used for many elementary

but important algorithmic tasks.
2 For some important problems this approach yields reasonable algorithms of at least 

some practical value with no limitation on instance size.
3 The expense to design a more efficient algorithm may be unjustifiable if only a few 

instances of problems need to£e solved and a brute force algorithm can solve those instances 

with acceptable speed.
4. Even if inefficient in general it can still be used for solving small size instances of a

problem.
5. It can serve as a yardstick with which to judge more efficient alternatives for solving 

a problem.
Q 62. Distinguish between decision, counting and optimization problems and 

give examples. (PTU, Dec. 2015)
Ans. Decision Problems : In this class of problems, the output is either ‘yes’ or ‘no’. 

For example, whether a given number is prime is a decision problem.
Counting problems : The output of this class of algorithms is a natural number. For 

example, given a number how many distinct factorization of the number are there.
Optimization problems : This class of algorithms optimizes some objective function 

based on the problem instance. For example, given a weighted connected graph, finding a 
minimal spanning tree is an optimization problem.

Q 63. Describe divide and conquer strategy for multiplying two n-bit numbers. 
Derive Its time complexity. (PTU, Dec. 2015)

Ans. Multiplying two n-bit numbers :
xy= (2n/2 xL+xR) (2-V2 yL + YR) 

= 2nxLyL + 2n/2 (X|_yR + xRyL) + xRyR
So# n/2 - bit products : 4 x -
# bit shifts (by n or n/2 bits) : 2
# additions (at most 2n bits long) : 3 y =

we can compute the n/2 - bit products recursively.
Let T(n) be the overall running time for n-bit inputs.Then

n/2 bits n/2 bits

*L Xr

yL yR
— —

T (n) =
0(1)

4T[jj + 0(n)
if n = 1 

otherwise
= 0(n2)

Q64, What do you mean by binary search? Explain with an appropriate example 
Procedure. (PTU, May 2014 ; Dec. 2004)
Ant. Binary search : Binary search is a technique for searching an ordered list in 

w^ctl *e first check the middle item and based on that comparison "discard" half the data.
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The same procedure is then applied to the remaining half until a matchiT^TT^---------
no more items left. mere are

In binary search the array list is divided into two equal parts (approximately) if the 
elements of array list are in ascending order then if desired element is less than the middle 
element of array list, it will never be present in the second half of the array. Similarly if the 
desired element is greater than the middle element of array, it will never be present in the first 
half of the array list.

Thus we can focus our attention on one half of the array list. The process is repeated 
and in the next stage we have to search for the element only is one quarter of the array list. 
This process reduce the search length and search time.

Example of Binary Search :

0 1 2 3 4 56 7 8 9 10 11

4 8 19 25 34 39 45 48 66 75 89 95

Suppose we want to search 66, then in first pass .

...... (0 + 11) 11 cMiddle = --------- L = — =5
2 2

4 8 19 25 34 39 45 48 66 75 89 95

0 1 2-3 4 6 7 8 9 10 11

-• Middle

66 is greater than the middle element, then process is repeated in second half

Middle =
(6-+11)

2

0 1 2 3 4 5 6 7 8? 9 10 11

4 8 19 25 34 39 45 48 66 75 89 95

Middle

Now the position is found that is 8.
Q 65. Write down the algorithm of binary search. (PTU, May 2014 ; Dec. 2004)

Ans. Algorithm of Binary Search :
Step 1. [Initialize]

Low = 0 
High = n - 1

[Here, Low = represent the lower limit
High = represent the upper limit]

Step 2. [Perform search]
Repeat thru step 4 while Low < = High
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Step 3. (Obtain index of midpoint of interval]
Middle= INT((Low + High)/2)

Step 4. [Compare]
if Element < List [Middle] .
it tzienie [Element = given element, List = array]

then High = Middle - 1
else

J if Element > List [Middle]

F then
low = Middle + 1
else
write (‘Successful Search’)
pos = Middle

[when pos is the position of given element]
Step 5. [Unsuccessful search]

Write ( Unsuccessful search’)
pos = null
Step 6. Exit.

Q 66. Write the worst and average case complexity of the binary search. 
Ans. Worst case : The worst case complexity of binary search is O(log n). 
Average case : The average case complexity of binary search is O(log n).

Q 67. What do you mean by ‘Sorting’ problem?
Ans. Sorting problem : The sorting problem asks us to rearrange the items of a given 

list in ascending order (or descending order).

Q 68. What do you mean by ‘Searching’ problem?
Ans. Searching problem : The searching problem deals with finding a given value, 

called a search key, in a given set.

Q 69. Explain bubble sort with example.
Ans. Bubble Sort: A bubble sort compares two values next to each other and exchange 

hem if necessary to put them in the right order.
It keeps passing through the array [a0,  a^J exchanging each pair of adjacent 

elements (a^, a,) which are out of order (a/_1 > aj).
Why does it works?
□ During the first pass the largest element is exchanged with each of the elements to 

its right and gets into position aN_r
□ After the second pass the second largest gets into position aN_2, 
□ After step K, the sub-array [aN_k aN_,J is ordered, we need to continue on the 

interval [0, N-k - 1],
□ When no more exchanges are required; the array is sorted.
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Sorting Activities for Bubble :
 Go through multiple passes over the array.
 In every pass :

(a) Compare adjacent elements in the list.
(b) Exchange the elements if they are out of order.
(c) Each pass moves the largest (or smallest) elements to the end of the array.
 Repeating this process in several passes eventually sorts the array into ascending 

order.
Example of Bubble Sort : 5 3 1 98247

Pass 1

5
3
3
3
3
3
3

3 19 8 2 
5 19 8 2 
1 5 9 8 2 
1 5 9 8 2 
1 5 8 9 2 
1 5 8 2 9 
1 5 8 2 4

4
4
4
4
4
4
9

7
7
7
7
7
7
7

3 1 5 8 2 4 7 9
1 3 5 8 2 4 7
1 3 5 8 2 4 7 Pass 2
1 3 5 8 2 4 7
1 3 5 2 8 4 7
1 3 5 2 4 8 7

1 3 5 2 4 7 8
1 3 5 2 4 7
1 3 5 2 4 7 Pass 3

1 3 2 5 4 7

1 3 2 4 5 7

1 3 2 4 5 7

1 3 2 4 5 Pass z

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 PassI

1 2 3 4

1 2 3 4

1 2 3 Pass

1 2 3 Pass

Bubble sort complexity Is O« and only sellable Io sort ..ray with small size o! dale
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Q 70. Explain Bubble sort « me' (n number of comparisons : The average
Ans. Bubble sort *ver*0® number of comparisons needed by the algorithm.

n.jmber of comparisons romoansons to put the largest element at position
□ At the first step, we need N P

□ At'fLe second step vre only need N-2 comparisons. We avoid comparing elements 

wrth the last one

i
Summing up (N-1)HN-2)........ > 1 = N(N - 1)/2.

Bubble sort time complexity In best case : We count the number of comparisons

needed by the algorithm.
Best Case : Bubble sort on an already sorted array :
□ It does like for the average case N(N - 1)/2 comparisons.
(J During the iterations on the array : 0 exchange.
Bubble Sort Time Complexity In Worst Case : We count the number of comparisons

needed by the algorithm
Worst Case : Array already sorted In reverse order ;
(J It does like for the average case N(N - 1)/2 comparisons. 
U II does a exchange each time It does a comparison N(N - 1 )/2 exchanges. 
0 71. Write down the algorithm of Bubble Sort for fixed number of passes. 
Ans. 8ubbleSort(x. n)
Whoro x ■ Represents tho list of elements

n » RoprosGnta the number of elements In the list
Stop 1. (Initialize)

l>0
Step 2. Repeat through 9tep 7 while (I < n-1).
Step 3. I ■ 0
Step 4. Repeat through step 6 while (j < n-l-1).
Stop 5. Il(x)|] > x[) * 1J

temp « x(j)
x(J)-x(j + i)
[x i + 1 ] e tomp

Step 6. |+*
Step 7. (♦<
Stop 8. Exit.

Q 72. Explain mergesort with the help of example.

the first exampfe9weSXISfanrt°(H corTlpari8on ba80d sorting algorithm. Merge sort Is 

chops It up Into two hm H 'V e’and'conc|uer al9orithm. To sort an array, merge sort first 
B..* X h9'WS' SMS "”se <»■>" merges roge.he, Ih. r«uK.

°'»Me the data elements Into two sections with equel number ol elements.

Fundamental Algorithmic Strategies

2. Sort the two sections separately.
3. Merge the two-sorted sections into a single sorted collection 
Example :

Complexity of mergesort is O(n* log (n))

Q 73. Explain the analysis for the mergesort.
Ans. Algorithm :
Mergesort(int [ ] a, int left, int right)
{
lf(rlght > left)
{
middle = left + (right - left)/ 2;
mergesort (a, left, middle) ;
mergesort (a, middle + 1, right) ;
merge (a, left, middle, right) ;
}
}
Assumption : N Is a power of two.
For N = 1 : time is a constant (denoted by 1)
Otherwise : time to mergesort N elements = time to mergesort N/2 elements plus time 

to merge two arrays each N/2 elements.
Time to merge two arrays each N/2 elements is linear, l.e. N

Thus we have :
1. T(1) = 1
2. T (N) = 2T (N/2) + N
Next we will solve this recurrence relation, first we divide (2) by N :
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„ 22™ = T(N/2)/(N/2) + 1
\ 3 N

N is a power of two, so we can write
? 4. T(N/2)/(N/2) = T(N/4)/(N/4) + 1

5 T(N/4)/(N/4) = T(N/8)/(N/8) + 1
6. T(N/8)/(N/8) = T(N/16)/(N/16) + 1

7 ......
8 T (2)/2 = T (1)/1 + 1
Now we add equations (3) through (8) : the sum of their left-hand sides will be equal to 

the sum of their right-hand sides :
T(N)/N + T(N/2)/(N/2) + T(N/4)/(N/4) +  + T(2)/2 = T(N/2)/(N/2) + T(N/4)/(N/4) + 

....+ T(2)/2 + T(1)/1 4-log N
(Log N is the sum of 1s in the right-hand sides)
After crossing the equal term, we get
9. T(N)/N = T(1)/1 + log N

T (1) is 1, hence we obtain.
10. T (N)= N + N log N = O(N log N)
Hence the complexity of the mergesort algorithm is O(N log N).
Q 74. Define Radix sort and also explain Radix sort algorithm.
Ans. Radix sort : Radix sort puts the elements in order by comparing the digits of the 

numbers. Sort objects based on some key value found with in the object. Most often used 
when keys are strings of the same length, or positive integers with the same number of digits.

Also known as postal sort, bin sort.
Radix sort algorithm :
□ Let us suppose keys are K-digit integers.
□ Radix sort uses an array of 10 queues, one for each digit 0 through 9.
□ Each object is placed into the queue whose index is the least significant digit (the

1 ’s digit) of the object key.
□ Objects are then dequeued from these 10 queues, in order 0 through 9, and put back 

in the original queue/list/array container; they are sorted by the last digit of the key.
□ Process is repeated, this time using the 10’s digit instead of the 1’s digit; values are 

now sorted by last two digits of the key.
□ Keep repeating using the 100’s digit, then the 1000’s digit, then the 10,000’s digit, 

□ Stop after using the most significant (10n_1’s) digit.
□ Objects are now in order in original container.
Q 75. Give an example of Radix sort.
Ans. Let us consider the following 9 numbers :

493 812 715k 710 195 437 582 340 385

Fundamental Algorithmic Strategies

We should start sorting by comparing and ordering the one's digits :
63

Digit Sublist
4 9 0 710 340
8 1 2 1
7 1 5 2 812 582
7 1 0 *3 493
1 9 5 4
4 3 7 5 715 195 385
5 8 2 6
3 4 0 7 437
3 8 5 8

kJ 9 I

Now, we gather the sublist into the main list again :
710, 340, 812, 582, 493, 715, 195, 385, 437
Now the sublist are created again, this time based on the ten’s digit

Digit Sublist
7 1 0 0
3 4 0 1 710 812 715
8 1 2 2
5 8 2 3 437
4 9 3 4 340
7 1 5 5
1 9 5 6
3 8 5 7
4 3 7 8 582 385

kJ 9 493 195
Now the sublists are gathered in order from 0 to 9 :
710 812 715 437 340 582 385 493 195
Finally, the sublists are created according to the hundred’s digit.

Digit Sublist
7 1 0 0
8 1 2 1 195
7 1 5 2
4 37 3 340

3 40 4 437 385 493

5 82 5 582

3 85 6
4 93 7 710 715

1 95 8 812
k> 9

•Ml

I
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812
Ind now we have a fully sorted array.
A " uvb-f is the running time of Radix sort?
? inhere be d digits in input integers. Radix sort takes O(d*(n + b)) time where b 
base for representing numbers, for example, for decimal system, b is 10. What is the 

value of d? If K is the maximum possible value, then d would be O(logb(R)). So overall time 
complexity is O((n + b) * logb (K)).

Which looks more than the time complexity of comparison based sorting algorithm for a 
large k. Let us first limit k. Let k < = nc. Where c is a constant.

In that case ; the complexity becomes O(n logb (n)). But it still does not beat comparison 
based sorting algorithms. What if we make value of b larger? What should be the value of b 
to make the time complexity linear? If we set b as n, we get the time complexity as O(n). In 
other words, we can sort an array of integers with range from 1 to nc if the numbers are 
represented in base n (or every digit takes log2(n) bits).

Q 77. What is a heap? Define maxheap or minheap. (PTU, May 2015, 2014) 
Ans. Heap : A heap is a complete binary tree in which each node satisfies the heap 

condition. There are two types of heaps or heap tree.
1 Maxheap
2. Minheap
Maxheap : Maxheap is also called descending heap. It is a complete binary tree in 

which every node has a value greater than or equal to value of every child of that node.
Minheap : Minheap is also called ascending heap. It is a complete binary tree in which 

every node has a value less than or equal to value of its every child of that node. 
Q 78. Give an appropriate example of heap sort.
Ans. Replace that root with last node of heap tree then keep the root at proper position 

i.e. always keep nodes value should be equal to or greater than all its children.
Now, let us consider the following example :

I—1 , Z-------2____ *____5 6 7 8 9 10
| 16 | 14 10 8 7 9 3 2 4 1

andplaXlt^^^ 1 °e'et6 W9heSt Hem 16 from P^°"

of item 16 and higher sub tree 8 of item 14 m °W pr°mote next lower item 14 in place
item 7. °f ,tem 14 In Place of dem 14. Fill the place of sub tree 8 with

Fundamental Algorithmic Strategies

This process continue untill all the items are sorted. I
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9 3 4 5 6 7 5 0 10

< 121 * I < H ° H10 H161

Q 79. Write down the algorithm of heap sort. 
Ans. Heat_sort(data, n)
where data = Represents the list of elements.

n - Represents number of elements in the list 
Step 1. [Create initial heap]

(call Heap_Creation(data, n)
Step 2. [Start sort]

Repeat through step 10 for k = n, n - 1,..... . 2
Step 3. [Interchange elements]

data[1] = datafk]
Step 4 temp = data(1]

i = 1
j = 2

(PTU, May 2015)

Algorithmic strategy

Stop 5. (And index of *7
W H 1 < k then
if datefj ♦ 1) > dauafrj then
J 1

Step 6 (Recreate the new heap)
Repeat through step 10 //Me j <« fc-1 and rutafjj >

Step 7. (Interchange element)
data(i) «= data(j)

Step 8. (Obtain left child]

j = 2*i
Step 9. [Obtain index of next largest child]

if j 4- 1 < k
if data[j ♦ 1J > data(j] then j = j ♦ 1 etse if j > n 
then j = 1

Step 10. (Copy element into its proper place]
datafj] = temp

Step 11. Exit.
Q 80. Write down the complexity of heap tort.
Ans. O(n * log (n))

Q 81. Briefly describe the basic idea of quicksort.
Ans. Quicksort is similar to mergesort; drnde-and-conquer recursive aigortCv^ rt s tee 

one of the fastest sorting algorithms Quick sort executes in O(n log n) on average and Qfn*) 
in the worst-case.

Basic Idea :
1. Pick one element in the array, which wiB be the pivot
2. Make one pass through the array, cafled a partition step, re-arrangng tee entnes 

so that:
(a) The pivot is in its proper place.
(b) Entries smaller than the pivot are to the left of the pivot
(c) Entries larger than the pivot are to its right

3. Recursively apply quicksort to the part of the array that is to tee ief! of tee prvot and 
to the right part of the array

Here we don’t have the merge step, at the end aM the elements are in the proper order 

Q 82. Write the average, best and worst case complexity for the quick sort. 
Ans. Average Case : O(N’ log (N))

Best Case : O(N’ log (N))
The best case is when the pivot is the median of the array, and teen tee left and tee 

right part will have same size.
There are logN partitions, and to obtain each partitions we do N compansons (and not 

more than N/2 swaps) Hence the complexity ts O(N’log (N)).
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Worst-case : O(N2)This happens when the pivot is the smallest (or the largest) element. Then one of the 
partitions is empty, and we repeat recursively the procedure for n-1 elements. 

Q 83. Explain the worst, beet and average case analysis for the quick sort.

Ans. Analysts :T (N) = T (i) + T (N - i - 1) + cN
□ The time to sort the left partition with i elements, plus 
U The time to sort the right partition with N - i - 1 elements, plus

□ The time to build the partitions.
Worst case analysis : The pivot is the smallest element

T (N) = T (N - 1) + cN, N > 1

Telescoping
T(N-1) = T (N — 2) + C (N-1)
T (N - 2) = T (N - 3) + C (N - 2)
T (N - 3) = T (N - 4) + C (N - 3)

T (2) = T (1) + C.2

Add all equations
T (N) + T (N - 1) + T (N - 2) + + T(2) = T(N-1) + T(N-2) + ...T(2) + T(1) + 

C (N) + C (N - 1) + C (N - 2) +...... + C.2

T (N) = T (1) + C (2 + 3 + ... + N)
T(N) = 1 + C (N (N + 1)/2 -1)

Therefore T (N) = O(N2)
.Best case analysis : The pivot is in the middle

T(N) = 2T (N/2) + cN

Divide by N :
T(N)/N = T(N/2) I (N/2) + C

Telescoping :
T(NZ2) / (N/2) = T(N/4) / (N/4) + C
T(N/4) I (N/4) = T(N/8) / (N/8) + C

T(2)/2 =T(1)/(1) + C

Add all equations :
T(N)/N + T(N/2) / (N/2) + T(N/4) / (N/4) +..... +

T(2)/2 = (N/2) / (N/2) + T (N/4) / (N/4) + .... + T(1) / (1) + c logN 

After crossing the equal terms :

T(N)/N = T(1) + c Log N = 1 + c Log N

T(N) = N + Nclog N
Therefore T(N) = 0(N log N)
Average Case Analysis :

T(N) = 0(N log N)

Fundamental Algorithmic Strategies

The average value of T(1) is 1/N times the sum of T(0) through T(N - 
^LT(D’l =0 thru N-1

T(N) = ^(XT(i>) + cN

Multiply by N

NT (N) = 2 (£ T( j)) + CN ' N

To remove the summation, we rewrite the equation for N - 1

(N - 1) T (N - 1) = 2 (£T(j)) + C(N-l)2 , j = 0 thru N - 2 and subtract.

NT(N) - (N - 1) T (N - 1) = 2T (N - 1) + 2c N - c 
Prepare for telescoping
Rearrange terms, drop the insignificant C :

NT(N) = (N + 1) T (N - 1) + 2cN 
Divide by N(N + 1):

T(N) 
(N + 1)

Telescope . 

T(N)

(N + 1)

T(N-1)/N + 2c/(N+1)

T(N—1)/N + 2c/(N+1)

= T(N-2)/(N-1) + 2c/(N)

= T(N-3)/(N-2) + 2c/(N-1)

T(N) = (N + 1)

T(2) T(1) 2c
3 " 2 3

Add the equations and cross equal terms :

(N + 1) 2 'Hl)

The sum £ Rj, j = 3 to N - 1 is about log N.

Thus T(N) = O(N log N).
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q 84 What are the advantages and disadvantages of quicksort?

Ans. Advantages of Quicksort :
1 One of the fastest algorithms on average.2 Does not need additional memory (the sorting takes place in the array - this is 

called in place processing). Compare with mergesort, mergesort needs additional

memory for merging.
Disadvantages of Quicksort :
1. The worst-case complexity is O(N2).

2. Very slow in the worst case.
3. In the worst case, could cause a stack overflow.
Q 85. Write down the algorithm of quick sort. (PTU, May 2013 ; Dec. 2010, 2008) 

Ans. Algorithm of quick sort :
QuickSortflist, first, last)
Where ~ *u~ '*** ®bamentslist = Represents the list of elements

first = Represents the position of the first element in the list. 
last = Represents the position of the last element in the list.

Step 1. Initialize
low = first
high = last
pivot = list[(low + high)/2]

Step 2. Repeat through step 7 while(low < = high).
Step 3. while (listflow] < pivot) repeat step 4.

Step 4. low = low + 1.
Step 5. while(list [high] > pivot) repeat step 6.

Step 6. high = high - 1
Step 7. if(low <= high)

temp = listflow]
listflow] = listfhigh]
listfhigh] = temp
low = low + 1
high = high - 1

Step 8. if(first < high)
Call QuickSort(list, first, high)

Step 9. rf(low < last)
call Quicksort (list, low, last)

Step 10. Exit
The Quick sort algorithm uses the O (N log 2N) comparisons on average case.
Q 86. Give an appropriate example of quicksort.
Ans- Lb Ub

4 2 3 5 1

t 

Pivot

Fundamental Algorithmic Strategies

The pivot selected is 3. Indices are run starting at both ends of thT^TT;-----~
starts on the left and selects an element that is larger than the pivot while a h 
starts on the right and selects an element that is smaller than the pivot. In thia^01™ 'nd8X 
4 and 1 are selected. These elements are then exchanged so. ' number

I 1 I 2 I 3 I 5 I 4 I
H-----------H H------------------H

This process repeats untill all elements to the left of the pivot <= the pivot, and elements 
to the right of the pivot are >= the pivot. Quicksort recursively sort the two sub array, so

1 2 3 4 5

Q 87. Explain the concept of lower bound on sorting with suitable example. 
Ans. Lower bound : A lower bound of a problem is the least time complexity required 

for any algorithm which can be used to solve this problem.
□ Worst case lower bound.
□ Average case lower bound.
The lower bound for a problem is not unique, e g. Q (1), Q (n), Q (n log n) are all lower 

bounds for sorting.
(Q (1), Q (n) are trivial).

A present, if the highest lower bound of a problem is Q (n log n) and the time complexity 
of the best algorithm is O(n2).]

□ We may try to find a higher lower bound.
□ We may try to find a better algorithm.
□ Both of the lower bound and the algorithm may be improved.
If the present lower bound is Q(n log n) and there is an algorithm with time complexity 

O(n log n), then the algorithm is optimal.
The worst case lower bound of sorting : 6 permutations for 3 data elements 

ai a2 a3
1 2 3 ’
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Example : Straight Insertion Sort :
Input data : (2, 3, 1)
1. a! : a2
2. a2 : a3, a2 <->
3. 3-, . c&2’ ^2
Input data : (2, 1, 3)
1. a-, ' a2» ci-j a2
2. a2 ■ a3
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(2.3.1)

(1.3. 2)

•r
(2.

a2:
(1.2.3H12.3)
(1.3.2H13-2)

•i*®? | (Z3.1H2.3.1)

kl.2H1.32}
Z1H23.1)

--------------- r^r^Tstralflht Insertion sort
Decision tree for srreig

r a?

>a |(1.3.2H1.2.3)
** aHj2.3.lH2.1.3) 

-------
•c

, | (1.3.2H1 2.3) i '
MQ.3.1H2.1.3) a,<3;

Lower bound of sorting : To find the lower bound, we have to find the smallest depth 
of a binary tree, n! distinct permutations, n! leaf nodes in the binary decision tree.

Balanced tree has the smallest depth :
riog(n!)l = Q(n log n)

lower bound for sorting : Q(n log n)

Method :
log(n!) = log(n(n - 1).....1)

= log 2 + log 3 +..... + log n >

= loge [xln x -x]"

= log e (n In n - n + 1) 
= n log n - n log e + 1.44 
> n log n - 1.44 n 
= Q(n log n)

Q 88. Write a short note on selection problem.
Ans. Selection problem :
Input: A set A of n elements or numbers and an integer i, with 1 £ i £ n. 
Output: The element x e A that is larger than exactly i - 1 other elements of A. 
The selection problem can be solved in O(n log n) time, since we can sort the numbers 

using heapsort or mergesort and then simply index the ith element in the output array. 
Q 89. Define median and order statistic.
Ans. The ith order statistic of a set of n elements is the ith smallest element. 
For e.g. . The minimum of a set of elements is the first order statistic (i = 1), and the 

maximum is the nth order statistic (i = n).

73
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A median, Informally, is the “halfway poinf of the set.
When n is odd, the median is unique, occuring at I = (n > f)/2. When n is e^en 

two median, occuring at i = n/2 and I = n/2 + 1. Thus, regardless of the parity oTn 
occur at i = L(n + 1) / 2 J and i = T(n + 1)/2l.

Q 90. How many comparisons are necessary and sufficient for computing both 
the minimum and maximum?

Ans. We can easily obtain an upper bound of n - 1 comparisons for finding the minimum 
of a set of n elements. Examine each element in turn and keep track ol the smallest one. The 
algorithm is optimal, because each element, except the minimum, must be compared to a 
smaller element at least once.

Minimum(A)
1. min <- A[1]
2. for i 2 to length[A]
3. do if min > A[i]
4. then min <- A[i]
5. return min
Here minimum(A) has worst-case optimal number of comparisons. Wen to compute 

the minimum n - 1 comparisons are necessary and sufficient. The same is the true for the 
maximum. So, the number should be 2n - 2 for computing both.

Q 91. Write a note on simultaneous minimum and maximum.
Ans. Simultaneous minimum and maximum : Some applications need to determine 

both the maximum and minimum of a set of elements. For example . graphics program trying 
to fit a set of points on to a rectangular display. Independent determination of maximum and 
minimum requires 2n - 2 comparisons. In-fact, at most 3ln/2j comparisons are needed. 

We maintain the minimum and maximum of elements seen so far We process elements 
In pairs. Then we compare with each other, and then compare the target element to the 
maximum so far, and compare the smaller element to the minimum so far.

This leads to only 3 comparisons for every 2 elements. If we compare the elements of 
a pair to each other, the larger can’t be the minimum and the smaller can’t be the maximum. 
So we just need to compare the larger to the current maximum and the smaller to the current 
minimum. It costs 3 comparisons for every 2 elements.

The previous method costs 2 comparisons for each element.

(® ®) (® ®) .. (® ©'■

® ®
•

larger sterner is
Compare to the cunent maximum

© ® Smaller elements
Compare to the current minimum



LORDi Design & Analysis of Algorithms
74

3(n-1) .
If n is odd, number of comparisons = —-— = 3Ln/2J

Senna up the Ml »h~™ ™‘ d0>>e"<ls on "he,ter " “
If n is even, compare the first two elements and assign the larger to max and the smaller to 

min. If n is odd, set both min and max to the first element.

If n is even, number of comparisons = +1 (for the initial comparison) = y - 2

< 3 LrV2j.

Thus total number of comparison is < 3Ln/2J

Q 92. Explain selection problem in expected linear time.
Ans. Selection in expected linear time : Modeled after randomized quicksort and 

exploits the abilities of Randomized-Partition (RP). Randomized-partition returns the index K
in the sorted order of a randomly chosen element (pivot). If the order statistic we are interested
in, i, equals k, then we are done. Else, reduce the problem size using its other ability. RP 
rearranges the other elements around the random pivot. If i < K, selection can be narrowed 
down to A[1 .... K -1). Else, select the (i - K)th element from A[K + 1 .....nJ.

(Assuming RP operates on A[1 .... n] For A[p...... r], change K appropriately.
Randomized Quicksort
Quicksorts,p,r) 
if p < r then

q : = Rnd-Partition(A, p, r); 
Quicksorts, p, q - 1); 
Quicksorts, q + 1, r)

A(p... r] 
-------------------X

A[p...q -1] Afq*1...r)

^5 £5

Rnd-partition (A, p, r) 
i: = Random (p, r); 
A[r] A[i]; 
x, i: = A[r], p - 1 ; 
for j: = p to r - 1 do 

if A[j] < x then 
i: = i + 1 ; 
A[i]oA[j] 

fi
od;

A[i +1] <-> A[r]; 
return i + 1

Randomized-select
Randomized-select(A, p, r, i) // select ith order statistic

2- then return A[p]
3- q Randomized-Partition (A, 
4K*-q-p+1
5. if i = k

P. 0
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6. then return A[q]
7. elseif i < k
8. then return Randomized-Select (A, p, q - 1, i)
9. else return Randomized-Select (A, q + 1, r, i - K)

K-

To find the ith order 
statistic in A(p ...q-1]

answer
To find the (»-K)tbi order 
statistic in A(q+1 r]

Algorithm analysis :
The worst case : Always recurse on a subarray that is only 1 element smaller than the 

previous subarray.
' T(n) = T(n - 1) + O(n)

= O(n2)
The bese case : Always recurse on a subarray that has half of the elements smaller 

than the previous subarray.
T(n) = T(n/2) + O(n)

= O(n)
The average case : We will show that T(n) = O(n).
For 1 < K < n, the probability that the subarray A[p .. q] has K elements is 1/n. To obtain 

an upper bound, we assume that T(n) is monotonically increasing and that the ith smallest 
element is always in the larger subarray. So we have

T(n) < - £ (T(max)(K-l, n-K) + O(n)) 
n K=i

T(n) < - £ (T(max)(K -1 n - K) + 0 (n)) 
n K=1

1 n 
= - Y (T(max) (K - 1,n - K))) + O(n) 

nKi

<- V T(K)+O(n) 
n
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IK -1 if K > |n/21 
max (K-1.n-K)= jn_K j( K pn/2l

if n is even each term from T (fn/21) to T(n - 1) appears exactly twice.
If n is odd, each term from T (fn/2l) to T(n - 1) appears exactly twice and T(Ln/2j)

K 1 2 Tn/21 Tn/21 + 1 n-1 n

max (K-l.n-k) n-1 n-1 n-T n/21 fn/21 n-2 n-1

appears once.
Because K = Tn/2l, K — 1 = n - K = Ln/2 I.

Solve this recurrence by substitution : Let us assume T(n) < cn for sufficiently large 
c. The function described by the O(n) term is bounded by an for all n > 0.

Then, we have

n-1

Z*’
Ik=i

n/2 -1A 
z*
K=1 J

+ an =
2c (n-1)n _ (I_n/2J-1) [n/2_f 

n 2 2
\ 7

+ an

2c (n-1)n 
"n 2

(n/2-2) (n/2 — 1)

2
+ an

c 
n

c
f 3n 1 
[ 4 +2

2^ 
- +an 
n/

3cn c
<----- + — + an =

4 2
cn-

Then, if we assume that T(n) = 0(1) for n < 2c/(c - 4a),
We have T(n) = 0(n).
Q 93. Explain selection problem in worst-case linear time.
Ans. Section in worst-case linear time : Select the iih smallest element of S = {a1( a2, 

• an)-
Use so called prune and search technique : 
Let xeS, and partition S into three subsets

S1 = {a, | a, < x} 
s2 = (a, I a, = x}

Fundamental Algorithmic Strategies

s3 = {Q| I a, > x}
If |SJ > I, search Ith smallest element in S1 recursively, (prune S2 and S3 away) 
Else if ISJ + |S2| > i, then return x (the ith smallest element).
Else search (i - flS-j j + |S2|)) th in S3 recursively, (prune Sj and S2 away). 
Now how to select x such that Si and S3 are nearly equal. 
The way to select x

contributes 3 elements which are > x

Select ith element in n elements :

1. Divide n elements into |’n/5'j groups of 5 elements.

2. Find the median of each group.

3. Use SELECT recursively to find the median x of the above f n/5] medians.

4. Partition n elements around x into S1. S2 and S3.
5. If |Si| > i, search ith smallest element in S1 recursively. 

Else if |SJ + |S2| > i, then return x (the ith smallest element). 
Else search (i - (|S-|| + |S2|)) th in S3 recursively

Analysis of Select :
Step 1,2,4 take O(n), step 3 takes T(Tn/5~l) .

Let us see step 5 :
At least half of medians in step 2 are > x, thus at least 1/2 Tn/5l - 2 groups contribute 3 

elements which are > x. i.e., 3(f 1/2 Tn/STI - 2) > (3n/10) -6.

Similarly the number of elements < x is also at least (3n/10) - 6. Thus, |S«|| is at most 
(7n/10) + 6, similarly for |S3|. Thus SELECT in step 5 is called recursively on at most (7n/10) 

+ 6 elements.
Recurrence is :

[ o(1) if n < some value (Le. 140)
T<n> = |T(rn/5l) + T(7n/10 + 6) + 0(n) if n> the value(i.e., 140)
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Solve recurrence by substitution
Suppose T(n) < co, for some c.

T(n) < c frV5l + c (7n/10 ♦ 6) + an
< cn/5 + c + 7/10 cn + 6c + an

Q
= — cn + an + 7c

10
= cn + (-cn/10 + an + 7c)

Which is at most cn if —cn/10 + an + 7c < 0
I e c > 10a (rv(n - 70)) when n > 70.
So select n = 140, and then c > 20a.
Note that n may not be 140. any integer > 70 is OK.

Q 94. The order of complexity of binary search (successful case) in best case is 
in average case is------ and in worst case is  (PTU, May 2007)
Ans. The order of complexity of binary search (successful case) in best case is O (1) in 

average case is O (tog n) and in worst case is O (log n).
Q 95. What is stable sorting? (PTU, May 2013, Dec. 2010, 2009, 2008)
Ans. Stable sorting : A sorting algorithm is said to be stable if two objects with equal 

keys appear in the same order in sorted output as they appear in the input unsorted array. 
For example, in the foltowing input the two 4’s are indistinguishable.

1, 4a, 3. 4b. 2
And so the output of a stable sorting algorithm must be :
1.2, 3. 4a, 4b
Some sorting algorithms are stable by nature like insertion sort, merge sort, bubble 

sort, etc. And some sorting algorithm are not, like heap sort, quick sort etc.
Q 96. What is the time complexity of binary search? Explain.

(PTU, Dec. 2014, 2013)
Ans. Time complexity of binary search : The best case complexity is 0(1) i.e. if the 

element to search is the middle element. The average and worst case time complexity are 
0(tog n).

Q 97. Write a code for maximum heap. (PTU, Dec. 2005)
Ans. Max Heap : Suppose H is a complete binary tree with n elements. Then H is 

called a heap or max heap, if the value at N is greater than or equal to the value at any of the 
children of N.

Q 98. Consider a set of elements {12, 34, 56, 73, 24, 11, 34, 56, 78, 91, 34, 91, 45}. 
Sketch the heapsort algorithm and use it to sort this set. Obtain a derivation for the 
time complexity of heapsort, both the worst case and average case behaviour.

(PTU, Dec. 2011)
Sket h"S C°nS'der 3 Set of elements 02. 34, 56, 73, 24, 11, 34, 56, 78, 91, 34, 91, 45}. 

the heapsort algorithm and use it to sort this set. Obtain a derivation for the time 
p exity of heapsort, both the worst case and average case behaviour.

Number of elements = 13 = n ; I = Floor (rV2) = 6
So consider the heap with 6 as root, the left subtree is a one element heap, the right 

subtree is a one element heap, and the root may be violating the heap property. So 11 comes 
down and 91 becomes the 6th node.

12 I J3J i91 34 56 78 91 34 | 11 I 45 I
1 l L i 4 I 5 6 7 8 9 10 I 12 JU
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Now lot I * 5 Wo hnvo tho honp with 6 no root nnd loft subtroo Io n ono element honp 
nnd tho right subtroo Io n ono olomonl honp.Tho olomont nt 5 Io vlolnllng tho hoop proporty 
oo lol 91 corno up to position 6, nnd 24 go down tho position 10,

— ■■■ ■ i i i i i ,
12 34 56 73 91 91 34 56 78 24 34 11 46

1 2 3 4 5 6 7 0 9 10 11 12 13

Now let I - 4. We have the heap with 4 as root and left sub tree Is a one element heap 
and the right sub tree Is a one element heap. The element at 4 is violating the heap property, 
so let 78 come up to position 4, and 73 go down to position 9.

fundamental Algorithmic Strategies

gub tree Is a one element heap. The element at 3 
come up to position 3, 56 go down to position 6.

------------ -------------- -- ---------_--------------Now lot I « 3, We have the heap with 3 as root and loft sub tree is a heap and the ngh\

« violating the heap property. to wt9A

12
4

34 91 78 91 56 34 56 ~73 I 24 I ^34 y
1 2 3 4 5 6 8 9 “10 ~iT|

Now let I = 2. We have the heap with 2 as root and left sub tree is a heap and the righ 
sub tree is a heap. The element at 2 is violating the heap property, so let 91 come up tc 
position 2, and 34 go down to position 5.

12 91 91 78 34 56 34 56 I 73 ’ 24 34 1 11 ' 45 I
1 2 3 4 5 6 7 8 9 10 11 12 3
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1 as root and left subtree is a heap and the right 
violating the heap property, so let 91 come up to

82 _______ _________
Now let I = 1. We have the heap with 1 as 

subtree is a heap. The element at 1 is v. -

Now 12 is compared with its two children, 73 moves up and 12 moves down.

(PTU, Dec. 2004)Q 99. What is binary searching?
Ans. A binary search is a technique for quickly locating an item in a sequential list. A 

sequential search is a procedure for searching a table that consists of starting at some table 
Poston (usually the beginning) and comparing the file-record key in hand with each table- 
record key, one at a time, until either a match is found or all sequential positions have been 
searched.

Fundamental Algorithmic Strategies

Q 100. Apply the quicksort technique on the following list •
L = <^1’4’1,5’9’2’6’5'4> (PTU,
Ans. Quick sort technique for L = <3. 1, 4,1, 5, 9, 2, 6, 5, 4> is as follow

Q 101. What is the worst case running time of quick sort? (PTU, May 2008) 
Ans. In the worst case, recursion may be n levels deep (for an array of size n) 
 But the partitioning work done at each level is still n
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"^TTforQutoksort is O (n2)
does this happen?

arrangements that could make this happen

two common cases :
15 OIIUumj wv.—j

-k- is inversely sorted (sorted in the opposite order).
! What is the order of bubble sort? (PTU, May 2008)

* rl: A sorting technique that is typically used for sequencing small lists, 
iring the first item to the second, the second to the third and so on until it 

n out of order. It then swaps the two items and starts over. The sort may alternate 
of the list to the bottom and then from the bottom to the top. The name comes 

notion that items are raised or “bubbled up’’ to the top.

So worst case
When
There are many
Here are U-When the array is already sorted
When the array is ‘-------

84

Q 102.
Ans. Bubble Sort:

It starts by comparing f* 
finds one item out<
from the top <
from the nonun ma» --------------Q 103. Write a Heapsort algorithm and analyse the same. (PTU, Dec. 2004) 

Ans. Heapsort : The data structure of the heapsort algorithm is a heap. The data 
sequence to be sorted is stored as the labels of the binary tree. As shown later in the 
implementation no pointer structures are necessary to represent the tree, since an almosts 
complete binary tree can be efficiently stored in an array.

Heapsort Algorithm : The following description of heapsort refers to fig. 2 (a) - (e)

Retrieving the maximum element and restoring the heap
If the sequence to be sorted in arranged as a heap, the greatest element of the sequence 

can be retrieved immediately from the root (a). In order to get the next-greatest element, the 
rest of the elements have to be rearranged as a heap.

The rearrangement is done in the following way : Let b be a leaf of maximum depth. 
Write the label of b to the root and delete leaf b (b). Now the tree is a semi-heap, since the 
root possibly has lost its heap property.

Making a heap from a semi-heap is simple : Do nothing if the root already has the 
teap property, otherwise exchange its label with the maximum label of its direct descendants 
(c). Let this descendant be v, i.e. make a heap from the semi-heap rooted at v (d). This 
process stops when a vertex is reached that has the heap property (e). Eventually this is the 
case at a leaf z y

FJ^mental Algorithmic Strategies________________________________________________

-''Q104.Explain in detail quick sorting ™hod Provide a completT^^

rtU|ck sort* ~ i (PTU, May 2012 ; Dec. 2005'i
Ans. Quick Sort : This is the most widely used internal sorting algorithm. It is based on 

jivide'an^'con<^uer ’ e D’v’de the problem into sub-problems, until solved sub problems
r0 found.

Algorithm :
This algorithm sorts an array A with N elements
1. {Initialize] TOP : = NULL

• 2. If N > 1, then TOP : = TOP + 1, LOWER [1]: = 1, UPPER [1]: = N
3. Repeat steps 4 to 7 while TOP * NULL
4. Set BEG : = LOWER [TOP], END : = UPPER [TOP], TOP := TOP - 1
5. Call QUICK (A, N, BEG, END, LOC)
6. If BEG < LOC - 1 then

TOP : = TOP + 1, LOWER [TOP]: = BEG
UPPER [TOP] = LOC - 1
End If

7. If LOC + 1 < END then
TOP : = TOP + 1, LOWER [TOP] := LOC + 1
UPPER [TOP]: = END
End If

8. Exit
The Quick sort algorithm uses the O (N log2 N) comparisons on average.
Q 105. Write a recursive algorithm for binary search tree and complexity. 

(PTU, May 2009)
Ans. Binary search (A [0...N - 1], value, low, high) { 
if (high < low)
return -1 // not found
mid = low + (high - low) I 2
if (A [mid] > value)
return BinarySearch (A, value, low, mid - 1)
else if (A[mid] < value)
return BinarySearch (A, value, mid + 1, high)
else
return mid // found
}
It is invoked with initial low and high values of 0 and N - 1.

Q 106. Write Heapify algorithm. (PTU, Dec. 2006
Ans. The bottom up insertion algorithm gives a good way to build a heap, but “Rober 

Floyd" found a better way, using a merge procedure called heapify.
Given, two heaps and a fresh element, they can be merged into one by making the ne\ 

one the root and trickling down.



86
LO^i» Design & Analysis of Algorithm

Build-heap (A)
n = |A|

for i = I “ f to 1 &°

Heapify (A, i)
Heaptfy (A, i)

teft = 2i
right = 2i + 1
if (left < n) and (A [teftj > A [i]) then
max = left

else
max = i

£ (right < n) and (A [right] > A [max}) then
max = nght

if {max = i) then
swap (A. JzJ. A [max])
Heaptfy (A max)

0 107. What is the time complexity of merge sort? (PTU, Dec. 2007}
OR

Write the worst case and best case running time of merge sort.
(PTU, Dec. 2011)

Ans. The hme complexity of merge sort is always O (n log n) in all the cases such as 
best case or worst case

Q108. Name three conditions under which sequential search of a list is preferable 
to binary search. (PTU, May 2009 ; Dec. 2008)

Ans. 1. to inear search there ts no need that list must be sorted.
2. For binary search one must have direct access to the middle element in any sub list.
3. to binary search keeping data in a sorted array is normally very expensive when 

toere are many insertion and deletions, operation are applied.

Q 109. What is the time complexity of selection sort? (PTU, May 2010)
Ans. Selection sort has no end conditions built in' so it will always compare every element 

every otoer element Thts gives it a best-worst-and average-case complexity of Ofn2).
Q 110. Analyze the bubble sort algorithm. Argue on its best case, average case 

and worst case time complexity. (PTU, Dec. 2005)
Ans. BubWe Sort : In this sorting algorithm, multiple swapping take place in one iteration. 

Smaller eferrente move or ‘bubble’ up to the top of the list. In this method, we compare the 
adjacent members of the list to be sorted, if the item on top is greater than the item immediately 
below it, rthey are swapped.

Algorithm ; BUBBLE (DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in DATA.
1. Repeat Steps 2 and 3 for K = 1 to N - 1

87
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2. Set PTR . _ 1 [Initialize pass pointer PTRi
3. Repeat while PTR < = N _ K . (Execule *

(a) If DATA [PTR] > DATA [PTR + 1] then 
Interchange DATA [PTR] and DATA [PTR + 1] 
End if 1

(b) Set PTR : = ptr + 1 
[End of inner loop]
[End of step 1 outer loop]

4. Exit.
The total numbers of comparissons in Bubble sort are 

= (N-1) + (N-2) .... + 2 + 1 

= (N-1)* N =O(N2)

The time required to execute the bubble sort algorithm is proportional to r^. where n ts 
the number of input items. The Bubble sort algorithm uses the O (n2) comparisons on average. 

The worst case is that you will have the smallest value in the last space in the anay. 
This means that is will move exactly once each pass towards the first space in the array It wil 
take n —1 passes to do this, doing n comparisons on each pass : O (n2)

The best case is that the data comes to us already sorted. Assuming that you have a 
smart implementation (which you should, because it’s easy) which stops itself once a pas 
makes no changes, then we only need to do n comparisons over a single pass O (n).

Q111. Give the recurrence relation for the time complexity of merge sort algorithm. 
(PTU, May 2015 ; Dec. 2013)

Ans. Merge sort is a recursive algorithm and time complexity can be expressed as 
following recurrence relation.

T(n) = 2T(n/2) + O(n)

Q 112. Use the master method to show that the solution to the binary-search 

(PTU, May 2014)recurrence relation T(n) = T(y) ♦ 0(1) is T(n) = 0(lg n).

Ans. We can use the Master theorem case 2 because from a=1 and b=2. We have 
n’oQb3 = n°=1, so for k=0 f(n) = 0(1) = (n10^ Ig*1 n).

This gives that
T(n) = 0 (n^b3 lgk+1 n) = 0(lg n)

Q 113. List out two drawbacks of binary search algorithm. (PTU, Dec. 2014) 
Ans. (1) In binary search the elements have to be arranged either in ascending or 

descending order. .... . .... .
(2) Each time the mid element has to be computed in order to partrt.on the Kst in two 

sublists.
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Pass 3 : Following sorted list is obtained after merging each sorted quadraplets.

12 3 5 8 9 10 40

Whole process of sorting

Compare value (5) to target 

5 is equal to target
Target was found, Index = 1

88_________________________ ____________ ___________
Q 114. Sort the following list using merge sort technique
L = <5, 8, 3, 9, 2,10,1, 40> (PTU* Dec* 2005)
Ans. Pass 1 : After merging each pair of elements following list of sorted pairs as obtain:

5 _8 3 J 2 JO 1 _ 40

Pass 2 : After merging each pair of elements following sorted quadraplets are obtained

3 5 8 9 1 2 10 40

______________  
'^7-_^d-inco(T’Puter sc'ence educalion The a'Oorrthm starts at the beginning ot the data 
,h0t S mpares the first two elements, and if the first is greater than the second, it swaps 
90t " ^continues doing this for each pair of adjacent elements to the end of the data set. it 
then1 tarts again with the first two elements, repeating until no swaps have occurred on the 
then sta simp|e, this algorithm is highly inefficient and is rarely used except in education
laS'p00u' better variant, cocktail sort, works by inverting the ordering criteria and the pass 
A Sl'9h V0n alternating passes. Its average case and worst case are both O (n*). 
directl°^ Sort . Merge sort takes advantage of the ease of merging already sorted lists 

sorted fist. It starts by comparing every two elements (i.e., 1 with 2, then 3 with 4..) 
into a new them lf the first should come after the second. It then merges each of the 
and swaPPts o| tw0 inl0 |ists ot four, then merges those fists of four, and so on until at last 
resu ting merged jnt0 the final sorted fist. Of the algorithms described here, this is the firs 

W°( rales well to very large fists, because its worst-case running time s O (n log n). 
’h n UK How binary tree can be used for searching an etement? Explain. 

u 1 (PTU, Dec, 2007)

Ans Binary Search : The binary search is the standard method for searching through a 
. arrav It is much more efficient than a linear search, where we pass through the array 

etements in turn until the target is found. It does not require that the
The binary search repeatedly divides the array in two, each time restricting the search

tn the half that should contain the target element
In this example, we search for the integer 5 in the 10-element array beta* .

Q 115. Amongst the various sorting techniques as Merge sort, insertion sort and 
bubble sort, which is best in worst case. Support your arguments with analysis. 

(PTU, Dec. 2010 ; May 2013, 2010, 2009)
Ans. Insertion Sort: Insertion sort is a simple sorting algorithm that is relatively efficient 

for small lists and mostly-sorted lists, and often is used as part of more sophisticated algorithms. 
It works by taking elements from the list one by one and inserting them in their correct position 
into a new sorted list. In arrays, the new list and the remaining elements can share the array's 
space, but insertion is expensive, requiring shifting all following elements over by one. The 
insertion sort works just like its name suggests - it inserts each item into its proper place in 
the final list. The simplest implementation of this requires two list structures - the source list 
and the list into which sorted items are inserted. To save memory, most implementations use 
an in-place sort that works by moving the current item past the already sorted items and 
repeatedly swapping it with the preceeding item until it is in place. Shell ort (see below) is a 
variant of insertion sort that is more efficient for larger lists. This method is much more efficient 

'han the bubble sort, though it has more constraints.
Bubble Sort: Bubble sort is a straightforward and simplistic method of sorting data

Loop l-Look at whole array
Low index = 0, high index = 9
Choose element with index (0 + 9) / 2 = 4

2 5 6 8 110 12 15 18 20 21

Compare value (10) to target
10 is greater than 5, so the target must be in the lower half of the array

Set high index = (4 - 1) = 3

Loop 2
Low index = 0, high index = 3
Choose element with index (0 + 3) /2 = 1

5 6 8 \ 10 12 15 18 20 a

| 2 \ 5 | 6 1[81poi p5]p8|p2p| 211
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(PTU, May 2009)
90 _

q 117. Sort*the following 
L = *

Ane. First we call

LOWO* Design

—-—
= <5’13’LfL'X-HE^b>eapSize[A) = 9

so, i = 4. 3. 2, 1

Now we call MAX-HEAPIFY (A, 4)

Mow we call MAX-HEAPIFY (A, 3)

c.ndamental Algorithmic Strategies __ 91

Now call MAX-HEAPIFY (A, 2)

We call MAX-HEAP IFY (A, I), we get BUILD-MAX HEAP
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Now for i 9 down to 2 when i = 9
do exchange A [1] <-> A [9]

Fundamental Algorithmic Strategic

When'= 8'

(A] 8 - 1
i.e. heap size [A] 7

20 25

Call MAX-HEAPIFY (A, 1), we get

When i = 7, do exchange A [1] <-> A [7] and heap size
[A] <-7-1

i.e. heap size [A] <-> 6

17 20 25

93
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We call MAX.HEAPIFY (A. 1)

When i » 6, do exchange A [1] <-+ A [6] and heap size (A) <- 6 - 1 
i.e heap size [A] <- 5

Now, we call MAX-HEAPIFY (A, 1)

13 17 20 25

2

Again call MAX-HEAPIFY (A, 1)

When i = 4, do exchange A [1] <-> A [4] and heap size (A] <- 3

7 8 13 17 20 25

Again, we call MAX-HEAPIFY (A, 1)
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96--------- ---------- [A1 ~ 2
When i = 3, do exchange A ( )

Thus, sorted list is

2 4 5 7 8 13 17 20 25

Q 118. Using binary search algorithm, find the number of comparisons required 

to find key value a the given list.
-15,-6,0,7,9,23,54,82,101,112,125,131,142,151 (PTU, May 2014)

Ans.

82 142 151-15 | -6 | 0 7 9 23 54

012345678 9 io Ti 12 13

We want to search 9, then in first pass
Middle = (0+13)/2 = 6

101 112 125 131

1
6
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9 is less than the middle element, then process Is repleated in 1st halt. 
Middle = (0+5)/2 » 2

| -15 | -6 | 0 | 7 I 9 | 23 J M | 821 101 | 125 I 131 | 142 | 151 \

0 if? 3 4 5 6 7 8 9 10 11 12 13
Middle

34-5 8Now middle
2 2 = 4

I -15 | -6 | 0 7 ICD 123 54 82 | 101 | 112 | 125 | 131 142"W

0 12 3 4 5 8 7 ft 9 10 11 12 13
Middle

Now the position is found that is 4 and value is found i.e. 9.

Q 129. Explain job sequencing with deadlines with a suitable example. 
Ans. Job sequencing with deadlines : We are given a set of n’ jobs. Associated with 

each job there is a integer deadline di > 0 and a profit pi > 0. For any job I the profit pl Is 
earned If and only if the job is completed by its deadline. To complete a job one has to 
process the job on a machine for one unit of time. Only one machine is available for processing 
the jobs. A feasible solution for the problem will be a subset ‘j’ of jobs such that each job in this 
subset can be completed by its deadline. The value of a feasible solution ‘J’ is the sine of the 
profits of the jobs in ‘j’. An optimal solution is a feasible solution with maximum value.

The problem involves identification of a subset of jobs which can be completed by its 
deadline. Therefore the problem suites the subset methodology and can be solved by the 
greedy method.

Example : Obtain the optimal sequence for the following jobs.

J1 J2 J2 J4 
(P1, P2, P3.P4) = (100,10,15,27)

(d1, d2. d3, d4) = 2, 1,?, 1
n=4

Feasible solution Processing Sequence Value

hi

(2. 1) 100 + 10 = 110
d. 3) (1.3) or (3,1) 100 + 15 = 115
(1.4) (4. 1) 100 + 27 = 127
(2. 3) (2, 3) 10 4- 15 = 25
(3. 4) (4. 3) 15 + 27 = 42
(D (D 100
(2) (2) 10
(3) (3) 15
(4) (4) 27
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—---------------- -------- --------------------------—onlTiobs 1 and 4 are processed

In tteexamplesokrton -3\e^°P^ in ,he order j4 followed by jl. Tha
and the value is 127. These |obs , Ancj ,he processing of job 1 begins at
process of job 4 begins at time Oa flre completed with in their deadlines. The
time 1 and ends at tane 2. Therefore both pbs se|£ted the go|utjon ,s accordi

»............ .. s“*' “

COfW‘XX^y^sL^isTXlXTe jobs in decreasing order of profits.

O 130. Suppose we use Dijkstra’s greedy, single source shorte** ®J9°ri,h"i 
on an undirected graph. What contraint must we have for the algorithmto work; and 
Why ? ( » . 019)

Ans, Dijkstra algorithm will work fine under these constraints.
Eg. If N = 5 and the vertices are 1 (the source), 2, 3, 4 and 5 the list ([2, 3, 4], [2, 3, 4,

5J. [2, 3. 4, 5]. [3, 4, 5]) means that for step 2 only vertices 2, 3 and 4 can be visited and so

forth.
Starting from vertex 1 we can get to 2. (Let’s suppose distance d = 2), 3 (d = 7) and y 

(d= 11) - Current value of distance is (0, 2, 7, 11, N/A] Next, pick the vertex with the shortest 
distance (vertex 2). We can get from it to 2 again (shouldn't be counted), 3 (d = 3), 4 (d = 4) 
or 5 (d = 9). We see, that we can get to the vertex 3 with distance 2 + 3 = 5 < 7, which is 
shorter than 7, so update the value. The same is for the vertex 4 (2 + 4 = 6 < 11) - Current 
values are (0, 2, 5, 6, 9].

Mark aW the vertices we visited and follow the algorithm until all the vertices are selected. 
Q 131. Suppose you were to drive from Delhi to Mumbai. Your gas tank, when 

full, holds enough gas to travel m miles and you have a map that gives distances 
between gas stations along the route. Let d1 < d2<.......< dn be the locations of all the
gas stations along the route where di is the distance from Delhi to gas station. You 
can assume that the distance between neighbouring gas stations is at most m miles. 
Your goal is to make as few gas stops as possible along the way. Give the most 
efficient algorithm you can find a to determine at which gas stations you should stop 
and prove that your strategy yields an optimal solution. Be sure to give the time 
complexity of your algorithm as a function of n. (PTU, Dec. 2019)

Ans. The greedy algorithm we use is to go as far as possible before stopping for gas. 
Let c, be the city with distance d, from St. Louis. Here is the pseudo-code

S = ;
last - 0
for i = 1 to n
if (d(, last) > m
s = s [fag
last = t.l •
Clearly the above is an O(n) algorithm. We now prove it is correct.
Greedy Choice Property : Let S be an optimal solution. Suppose that its sequence of 

stops is s,; sj, :;; where s, is to stop corresponding to distance t(. Suppose that g is the 
last stop made by the above greedy algorithm. We now show that there is an optimal solution 
witn last stop at g. If s, = g then S is such a solution. Now suppose that s,6 = g. Since the 
greedy algorithm stops at the latest possible city then it follows that s, is before g. We now
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argue that S = hg; s2; s3;:::: ;sk i is an optimal solution. First note that jSj = jSj. Second 
argue that S Is legal (i.e. you never run out of gas). By definition of the greedy choice you can 
reach g. Finally, since S is optimal and the distance between g and s2 is no more than the 
distance between s1 and s2, there is enough gas to get from g to 82. The rest of S is iike S and 
thus legal.

Optimal Substructure Property : Let P be the original problem with an optimal solution
S. Then after stopping at the station g at distance d, the subproblem P that remains is given 
by dl4>1;: : : :; dn (i.e. you start at the current city instead of St. Louis).

Let S be an optimal solution to P. Since, cost (S) = cost (S) * 1, clearty an optimal 
solution to P include within it an optical solution to P.

Q 132. Give the solution for knapsack with Branch and Bound. The Capacity of 
knapsack Is m = 12. There are 5 Objects with profit (p1, p2, p3, p4, p5) » (10,15, 6, 8, 4) 
and weights (wn, w2, w3, w4, w5) = (4, 6, 3, 4, 2). (PTU, Dec. 2019)

Ans. Step 1 : (To find profit/weight ratio)
p1/w1 = 10/2 = 5
p2/w2 = 5/3 = 1.67
p3/w3 =15/5 = 3
p4/w4 = 7/7 = 1
p5/w5 = 6/1=6
p6/w6 = 18/4 = 4.5
p7/w7 = 3/1=3
Setp 2 : (Arrange this profit/weight ratio in non-increasing order as n values) Since the 

highest profit/weight ratio is 6. This is p5/w5, so 1st value is 5. Second highest profit/weight 
ratio is 5. That is p1/w1, so 2nd value is 1. Similarly, calculate such n values and arrange 
them in non-increasing order.

Order = (5,1, 6, 3, 7, 2, 4)
Step 3 : (To find optimal solution using m = 15&n = 7)
Consider x5 = 1, profit = 6
Then consider x 1 = 1, profit = 10
So weight uptil now = 1+2 = 3
Now x6 = 1, profit = 18
So total profit = 16 + 18 = 34
And weight uptil now = 3 + 4 = 7
Now x3 = 1, profit = 15
So total profit = 34 + 15 = 49
And weight uptil now = 7 + 5 = 12
Now x7 = 1, profit = 3
So total profit = 49 + 3 = 52
And weight uptil now = 12 + 1 = 13
Since m = 15 so we require only 2 units more. Therefore x2 = 2/3
So total profit = 52 + 5 x 2/3 = 52 + 3.33 = 55.3
And weight uptil now = 13 + 3x2/3 = 15
Thus, the optimal solution that gives maximum profit is,
(1,2/3, 1,0, 1, 1, 1)
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Q 133. Write a program for recursive bin ry 

. a----- , __ __

Ans. # include <stdio.h>
int binary search (inf arrf ], int, int r, ml x)

Design & Analysis of Algon^.

---------------6n e'enieht 
recur»i<^ —•—* (PTU, Dec. 2niJ

wlthln’array. For what data binary search Is not app )

{
lf(r>= 1)

int m - 1 + (r - 1) Z2;
If (arr [mid] = = x) return mid;
if (arr [mid] > x) return binary search (arr, 1, mid -1 x); 
return binary search (arr, mid + 1, r, x);
}
return - 1;
}
int + main (void)
{
int arr [ ] = {2, 3, 4, 10, 40)
int n = size of (arr)/size of (arr [0]);
int x = 10;
int result = binary search (arr, 0, n-1, x);
(result = = -1) ? printf (“element is not present in array”).
)
return 0; printf (“element is present at index % d”, result);
Binary search is not possible in linked list data structure if the list is not sorted and any 

andom element in it can not be accessed in constant time.

□□□

Chapter 1
Graph and Tree Algorithms

Contents
Traversal algorithms : Depth First Search (DFS) and Breadth First Search (BFS), Shortest 
path algorithms, Transitive closure. Minimum Spanning Tree, Topological sorting, 
Network Flow Algorithm.

POINTS TO REMEMBER

1. When the search necessarily involves the examination of every vertex in the object 
being searched it is called a traversal.

2. There are two techniques for traversals in graph. These are :
(i) Breadth first search
(ii) Depth first search

3. Topological sort is an ordering of the vertices in a directed acyclic graph (DAG), such 
that : if there is a path from u to v, then u appears after u in the ordering.

4. Dijkstra's algorithm finds the length of an optimal path between two vertices in a graph.
5. A subgraph T of a undirected graph G = (V,E) is a spanning tree of G if it is a tree and 

contain every vertex of G.
6. A minimum spanning tree is a subgraph of ap undirected weighted graph G, such that:

(i) It is a tree (i.e. It is acyclic)
(ii) It cover all the vertices V. It contains |V]-1 edges.

QUESTION-ANSWERS
Q 1. Define Traversal.
Ans. When the search necessarily involves the examination of every vertex in the object 

being searched it is called a traversal.

Q 2. List out the techniques for traversals in graph. (PTU, Dec. 2018)
Ans. 1. Breadth first search

2. Depth first search
Q 3. Give a suitable example and explain the breadth first search (BFS). 

(PTU, Dec. 2016, 2015 ; May 2019, 2015, 2014)
Ans. Breadth First Search (BFS) : Breadtn-first-search (BFS) is a general technique 

for traversing a graph. A breadth first search traversal of a graph G.
□ Visit all the vertices and edges of G.

101
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□ Determines whether G is connected.
□ Compute the connected component of G.
□ Compute a spanning forest of G.
Breadth first search on a graph with n vertices and m edges takes O(n + m) time. 
BFS can be further extended to solve other graph problems.
□ Find and report a path with the minimum number of edges between 2 given vertices.
□ Find a simple cycle, if there is one.
Breadth first search is obtained from Basic Search by processing edges using a data 

structure called a queue. It processes the vertices in the graph in the order of their shortest 
distance from the vertex s (the start vertex).

BFS Algorithm : Given (undirected or directed) graph G = (V,E) and nodes s g V 
BFS(s)
Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
Set Q to be the empty queue
enq(s)
While Q is non-empty do
u = deq(Q)
for each vertex v g Adj(u)
if v is not visited then
add edge(u, v) to T
Mark v as visited and enq(v)

2- [2,3]

Graph and Tree Algorithms
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2. [2,3]
3. [3, 4, 5]

2. [2,3]
3. [3,4,5]
4. [4, 5, 7, 8]

1. [1]
2. [2. 3]
3. [3. 4. 5]
4. [4. 5, 7, 8]
5. (5. 7, 81
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2. [2, 3]
3. [3,4,5]
4. [4, 5, 7, 8]
5. [5,7.8]
6. [7,8,6]

2. [2,3]
3. [3,4,5]
4. [4, 5, 7, 8]

6. [7,8,6]
7. [8, 6]

Graph and Tree Algorithms 505

2. [2,3] 5. [5, 7, 8] 8. [6]

BFS tree is the set of black edges
Q 4. Write down the applications of breadth first search and depth first search. 

(PTU, Dec. 2017 ; May 2019, 2018, 2016)
Ans. BFS : Using the template method pattern, we can specialize the BFS traversal of 

a graph G to solve the following problems in O(n + m) time.
□ Compute the connected components of G.
□ Compute a spanning forest of G.
□ Find a simple cycle in G, or report that G is a forest.
Q Given two vertices of G find a path in G between them with the minimum number of 

edges or report that no such path exists.
DFS :
□ To find a path from a vertex S to a vertex v.
□ To find the length of such a path.
□ To construct a DFS tree/forest from a graph.
□ Topological sort : Using depth-first search to perform topological sort of a directed 

acyclic graph.
□ Strongly connected components : Decomposing a directed graph into a strongly 

connected components using two depth-first searches.
Q 5. Give a suitable example and explain the depth first search (DFS).

(PTU. May 2017 ; Dec. 2016)
Ans. DFS : Similar to depth-first traversal of a binary tree.
□ Choose a starting vertex.
□ Do a depth-first search on each adjacent vertex.
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Pseudo-code for depth-first search
DFS : Mark vertex as visited 
for each adjacent vertex 
if unvisited

vertex.

ABDE

Graph and Tree Algorithms

ABDE
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^5 Explain topological sort with the help of suitable example.

(FTU, May 2019 ; Dec. 2014)
Ans. Topological Sort : An ordering of the vertices tn a directed acycfc graph (DAG)

such that: x* -
If there is a path from u to v, then v appears after u tn the ordering/
Types of graphs :
1 The graphs should be directed, otherwise for any edge (u. v) there would be a path 

from u to v and also from v to u and hence they cannot be ordered.
2. The graph should be acyclic, otherwise for any two vertices u and v on a cycle u 

would preceede v and v would preceede u.
The ordering may not be unique

V1, V2, V3, V4 and V1, V3, V2, V4 are legal orderings.
Here, degree of a vertex U is the number of edges (U, V) i.e. outgoing edges. 
Indegree of a vertex U is the number of edges (V, U) i.e. incoming edges. 
The algorithm for topological sort uses “indegrees’ of vertices :
1. Compute the indegrees of all vertices.
2. Find a vertex U with indegree 0 and store it in the ordering. If there is no such vertex 

then there is a cycle and the vertices cannot be ordered. Stop.
3. Remove U and all its edges (U, V) from the graph.
4. Update the indegrees of the remaining vertices.
5. Repeat step 2 through 4 while there are vertices to be processed. 
Example :

1. Firstly, compute the indegrees
V1 :0
V2 : 1
V3 :2 
V4 : 2
V5 : 2

2. Find a vertex with indegree 0 : V1
3. Now remove V1 and update the indegrees :

Sorted : V1



110 LQTO> Design & Analysis of Algorithms

Remove edges : (VI, V2), (V1, V3) and (VI, V4)
Updated indegrees

V2.0
V3: 1
V4: b
V5:2

I Indegree
Sorted / V1 V1, V2 V1, V2, V4 V1, V2, V4, V3 V1,V2(V4,V3,V5
^2 i 0

V2 1 1 0

V3 2 1 1 0

L 2 1 0

L 2 2 1 0 0

Complexity of this algorithm : O(|VJ2), |V| Le. the number of vertices. 
To find a vertex of indegrees 0 we scan all the vertices i.e., |V| operations. 
Thus, we do this for al vertices i.e, |V|2
After toe initial scanning to find a vertex of degree 0, we need to scan only those vertices 

whose updated indegrees have become equal to 0.
1. Store afl vertices with indegree 0 in a queue.
2. Get a vertex U and place rt in the sorted sequence i.e., array or another queue.
3. For al edges (U, V) update the indegree of V, and put U in the queue if the updated 

indegree is 0.
4. Perform step 2 and 3 white the queue is not empty.
Complexity : The number erf operations is O(|E| + |V|), where |V| is the number of 

vertices and |Ej is toe number of edges.

Q 7. Explain Dykstra's algorithm.
Ana. Dykstra’s Algorithm : Dykstra’s algorithm solves the single-source shortest-path 

problem of frying shortest paths from a given vertex (the source) to all the other vertices of 
a weighted graph or digraph ft works as prim’s algorithm but compares path lengths rather 
toan edge lengths Dykstra’s algorithm always yields a correct solution for a graph with non­

negative weights.

Q 8. Explain Dijkatra's algorithm with the help of example. What Is Its time 
complexity. (PTU, May 2017; Dec. 2017, 2013)

Ane. Dykstra’s Algorithm : Dijkstra’s aJgonthm finds the length of an optimal path 
between two vertices in a graph. Optimal can mean shortest or cheapest or fastest or optimal 
in eome other sense: it depends on how you choose to label the edges of the graph. One can 
fad tie shortest path from a given source to all points in a graph in the same time, hence this 
prob is sometimes called the single source shortest paths problem

Graph and Tree Algorithms

Dijkstra’s Algorithm - Relax
Relax(vertex u, vertex v, weight w)
if d[v] > d[uj ♦ w(u, v) then 
d(v] <- d(u] + w(u, v)
p[v]«- u
Dijkstra’s algorithm - Idea
□ Initialize wt(v] = oo and wt(s] = 0
□ Insert all vertices v on to PQ with priorities wtfv].
□ Repeatedly delete node v from PQ that has min wtfvj. 
add v to S
for each v - w , relax v - w
Dljkstra’a Algorithm - SSSP - Dtjkstra
SSSP - Dijkstra(graph (G, w). vertex S) 
lnftializeSingleSource(G, S)
SH
Q<-V[G]
While Q * 0 do
u 4- ExtractMin(Q)
S Su{u}
for V e Adj(u] do
Relax(u, v, w)
lnitializeSingleSource(graph G, vertex s>
for v e V[G] do
d[v] 4- 00
p[v]4-0
d[s] 4- 0
Example :
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Time complexity : Time complexity of dijkaska’s algorithm is O (E Log V] 
Q 9. Explain Bellman-Ford algorithm with the help of suitable example.

(PTU, May 2015)
Ans. Idea in Bellman-Ford algorithm :
□ Repeat the following |Vj - 1 tiroes :

relax each edge in E.
□ Test if there is any negative weight cycle by
checking if dfvj > d(u] + w(u, v) for each edge (u, v).
Bellman-Ford Algorithm - SSSP-BellmanFord

8SSP-BellmanFord(graph (G, w),Vertex s)
InitializeSingleSourcefG, s)

for i «- 1 to |V (GJ - 1| do

Graph and Tree Algorithms

for (u, v) e E(G) do 
Relaxfu, v, w) 

for (u, v) e E(G) do 
if d(v] > d(u] + w(u, v) then 

return false 
return true.

Example of Bellman-Ford Algorithm
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Q 10. What is spanning trees?
Ans. Spanning Trees : A subgraph T of a 

tree of G if it is a free and contain every vertex of

LOTO5 Design & Analysis of Algorithms 

(PTU, Dec. 2015 ; May 2015, 2014) 
undirected graph G ='(V, E) is a spanning 

G.

Spanning tree 2 Spanning tree 3
0 11. What is minimum spanning tree (MST) and its applications? 

(PTU, Dec. 2018)
Ans. Minimum spanning tree: A minimum spanning tree is a subgraph of an undirected 

weighted graph G, such that :
□ it is a tree (i e., it is acyclic)
□ It covers all the vertices V.

It contains |V| - 1 edges
□ The total cost associated with tree edges is the minimum among all possible spanning 

Irees.
□ Not necessarily unique.
Applications of MST :
1. Any time you want to visit all vertices in a graph at minimum cost (e.g., wire routing 

on printed circuit boards, sewer pipe layout, road planning....)
2. Internet content distribution

SS$. also a hot research topic. Publisher produces web pages, content distribution 
network replicates web pages to many locations so consumers can access at higher 
speed. Minimum spanning tree may not be good enough! i.e., content distribution 
on minimum cost tree may take a long time!

3. Provides a heuristic for traveling salesman problems. The optimum traveling 
salesman tour is at most twice the length of the minimum spanning tree.

Q 12. Explain Kruskal’s algorithm with the help of example.
Ans. Kruskal’s algorithm :
1. Arrange all edges in a list (L) in non-decreasing order.
2. Select edges from L, and include that In set T, avoid cycle.
3 Repeat 3 until T becomes a tree that cover all vertices.

Graph and Tree Algorithms

Kruskal’s algorithm



Skip {7,8} to 
avoid cycle

Skip {5,6} to 
avoid cycle

{1,2} 12
{3,4} 12
{1,8} 13
{4,5} 13
{2,7} 14
{3,6} 14
(7, 8} 14
(5, 6} 14
{5, 8} 15
{6, 7} 15
{1. 4} 16 I
{2, 3} 16 I

{1,2] 12
-P.4} 12
-0.3} 13

{4,5} 13
- <2,7} 14

{3,6} 14
{7. 8} 14 Skip
{5, 6} 14
{5, 8} 15
{6, 7} 15
{1. 4} 16
{2, 3} 16

{1,2} 12
{3.4} 12
{1,8} 13

-{4,5} 13
{2,7} 14
{3,6} 14
(7, 8} 14 Skip
{5. 6} 14 Skip
{5, 8} 15
{6, 7} 15
{1.4} 16
{2, 3} 16

LOTOS Design & Analysis of Algorithm*

{1,2} 12
-13.4} 12

{1,8} 13
{4, 5} 13

J-2'7} 14
{3,6} 14
{7, 8} 14
{5, 6} 14
{5, 8} 15
{6, 7} 15
{1, 4} 16
{2, 3} 16

Graph and Tree Algorithms 
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Q 13. Explain Prim’s algorithm with the help of example. (PTU, May 2014) 
Ans. Prim’s algorithm :
1. Start from any arbitrary vertex.
2. Find the edge that has minimum weight from all known vertices.
3. Stop when the tree covers all vertices. 
Prim’s

Q 14. Apply Kruskal’s 
graph.

algorithm to find a minimum spanning tree of a given 
(PTU, Dec. 2011)

Ans. 1. We first select an edeg with minimum weight
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-©

Total Cost = 1

2 Then we select the next minimum weighted edge. It Is not necessary that selected 

edge is adjacent.
©—

&—?—©

Total Cost = 3

3. Then we select next minimum weight for an unvisited vertice

Total Cost = 8

4. All the vertices are visited but since the spanning tree should be connected one. 
Hence we select an edge with minimum weight.

Thus we get a minimum spanning tree with Kruiskal's algorithm

Total Cost = 12
Q 15. Let n = 5 (Pj, P2, 

Find optimal solution.
Ans.

•••• P5) = 08,14,12, 5,1) and (db d2,.... d5) = (2, 2,1, 3, 3). 

(PTU, Dec. 2006)

T, T.
Time —►0123

Profit = (P1 + P2+P4) = 18 + 14 + 5 = 37 
Then optimal schedule (1, 2, 4) wiith profit 37.

firaph and Tree Algorithms
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Q 16. What is minimum cost spanning tree algorithm? (ptu, May 2006)
Ans. Let G = (V, E) be an undirected connected graph. A sub-graph t = (V, E1) of G is 

a spanning tree of G if and only if t is a tree.

Q 17. What Is depth-first search algorithm? (ptu, May 2006)
Ans. Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree 

structure, or graph. One starts at the root (selecting some node as the root in the graph case) 
and explores as far as possible along each branch before backtracking.

Q 18. What Is Eulerlan cycle In a graph? ' (PTU, Dec. 2006)
Ans. In graph theory, an Eulerlan trail is a trail in a graph which visits every edge 

exactly once. Similarly, an Eulerlan circuit or Eulerlan cycle is an Eulerian trail which starts 
and ends on the same vertex. They were first discussed by Leonhard Euler while solving the 
famous Seven Bridges of Konigsberg problem in 1736. Mathematically the problem can be 
stated like this :

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path 
starting and ending of the same vertex) which visits each edge exactly once.

Q 19. What are row major and column major ordering? (PTU, May 2009)
Ans. n computing, row-major order and column-major order describe methods for 

storing multidimensional arrays in linear memory. Following standard matrix notation, rows 
are identified by the first index of a two-dimensional array and columns by the second index. 
Array layout is critical for correctly passing arrays between programs written in different 
languages. It is also important for performance when traversing an array because accessing 
array elements that are contiguous in memory is usually faster than accessing elements 
which are not, due to caching. Row-major order is used in C ; column-major order is used in 
Fortran and MATLAB.

Q 20. Describe a path in an undirected path. (PTU, Dec. 2010, 2007)
Ans. Sequence of vertices, such that there is an edge from each vertex to the next in 

sequence, is called path. First vertex is the path is called the start vertex ; the last vertex in 
the path is called the end vertex. If start and end vertices are the same, path is called cycle. 
Path is called simple, if it includes every vertex only once. Cycle is called simple, if it includes 
every vertex, except start one, only once.

Q 21. List the uses of graph coloring. (PTU, Dec. 2011)
Ans. Graph coloring is an arbitrary assignment of labels (colors) to objects within graph. 

Such objects can be vertices, edges, faces or a mixture of these. A graph coloring is distinct 
from a graph labeling in that in the former, the same label may be used more than once. 

The applications of graph coloring found in following areas :

1. Scheduling
2. Register allocation in compilers
3. Frequency assignment in mobile radios
4. Pattern matching
5. Sudoku.
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Input : A non empty connected weighted graph with vertics V and edges E. 
Initialize : Vnew = {x]» where x is an arbitrary node (starting point) from V, Enew = {} 
Repeat until Vnew = V :
> Choose an edge (u, v) with minimal weight such that us is in Vnew and v is not.
> Add V to Vnew and (u, v) to Enew
Output : Vnew and Enew describe a minimal spanning tree.

120--------------- - ------------- ----------------------- ------- (PTU, May 2008)
Q 22. Define Kruskal's algorithm. theory that finds mjnjmurT1 spanning
Ans. Kruskal's algorithm is an a 9°r'meang^ finds a subset of the edges that forms a 

tree for a connected weighted grap Qf a|| ,he edges in lhe tree is minimized
tree that includes every ^ex w g spanning forest (a minimum spanning
If the graph Is not connecte a|gorithrn js an example of a greedy algorithm,
tree for each connecrea ,

□eScreate°a forest F (a set of trees), where each vertex in the graph is a separate tree

□ create a set S containing all the edges in the graph
□ while S is nonempty all F is not yet spanning

• remove an edge with minimum weight from S
• if that edge connects two different trees, then add it to the forest, combining two 

trees into a single tree otherwise discard that edge.
At the termination of the algorithm, the forest has only one component and forms a 

minimum spanning tree of the graph.
Q 23. What are Prim’s and Kruskal’s algorithms for minimum cost spanning tree? 

(PTU, May 2011)
Ans. Prim’s algorithm is a greedy algorithm that finds a minimum spanning tree for a 

connected weighted undirected graph. This means it finds a subset of the edges that forms a 
tree that includes every vertex, where the total weight of all the edges in the tree is minimized. 

Description : The only spanning tree of the empty graph is again the empty graph. 
The following description assumes that this special case is handled separately.

The algorithm continuously increase the size of a tree, one edge at a time, starting with 
a tree consisting of a single vertex, until it spans all vertices.

□
□
□

□ ..... ----------
Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a 

connected weighted graph. This mean it finds a subset of the edges that forms a tree that 
includes every vertex, where the total weight of all the edges in the tree is minimized. If graph 
is not connected, then it finds a minimum spanning forest.

Description :
□
□
□

C® . forest F (a set of trees). »he,e each vertex b the graph is a separate tree 
Create a set S containing all the edges in the graph
White S in non empty and F is not yet spanning
> remove an edge with minimum weight from S two
> if that edge connects two different trees, then add rt to the forest, combtntng two 
trees into a single tree
> other wise discard that edge. . . m

At the termination of algorithm, the forest has only one component and forms a mm
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Q 24. Define a minimum spanning tree. Write Prim’s algorithm to find minimum 
spanning tree. <PTU’ Dec- 20081

Ans. A minimum spanning tree of a weighted connected graph is its spanning tree of 
the smallest weight, where the weight of a tree is defined as the sum of the weights on all its 
edges.

Prime’s algorithm to find minimum spanning tree : 
Procedure prime (G, W, S)
The above procedure subalgorithm finds the minimum spanning tree of a given 'g*. The 

procedure takes the advantages of priority queue data structure. It uses three array ‘color’, 
•pre’ and ‘key’.

Step 1. Initialization
For a <- Vv V2......V3 a e V
{
Set key [a] <- + oo
Set color [a] <- white 
} End of loop

■ •

i

Step 2. Start at root vertex
Set key [S] <- 0
Set pre [S] <- Null
Set Q <- call to prio queues (V) 
put vertices in Q

Step 3. Loop, searched until all vertices In MST 
While (non-empty) (Q))
<
Set a <- Extract_Minimum (Q) vertex with light edge 
start loop 2
For V <- V1t V2.......Adj [a] V e Adj [a]
{
If (color [V] = white) & & (W (a, V) < key [V]) then 
{
Set key [V] 4- W (a, V)
new lighter edge out of V
Call to decrease key (Q, V, key [V])
Set pre [V] 4- a
End of loop 2
Set color [a] 4- black
End of loop 1

Step 4. return at the point of call

return.
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Q 25. Draw the state space tree for m coloring when n - 3 and mi - 3. 
(PTU, Dec. 2011)

Ans. State space tree for m colouring with n = 3 and m = 3

Q 26 Define a minimum spanning tree. Write Kruskal’s algorithm to find minimum 
panning tree. (PTU, May 2010, 2009)

Ans. A minimum spanning tree : A connected, undirected graph, a spanning tree of 
at graph is a subgraph that is a tree and connects all the vertices together. A single graph 
in have many different spanning trees. We can also assign a weight to each edge, which is 
number representing how unfavourable it is, and use this to assign a weight to a spanning 
•e by computing the sum of the weights of the edges in that spanning tree. A minimum 
anning tree (MST) or minimum weight spanning tree is then a spanning tree with weight 
;s than or equal to the weight of every other spanning tree. More generally, any undirected 
iph (not necessarily connected) has a minimum spanning forest, which is a union of minimum 

anning trees for its connected components. •
Kruskal’s Algorithm : One idea given by J.B. Kruskal is the following. A minimum 

inning tree T is built edge by edge. The edges are sorted in the non-decreasing order of 
ir costs. At each stage, we choose the smallest unused edge that does not form a cycle 
a the already chosen edges. The algorithm Kruskal is described below.

Procedure Kruskal (G : graph) :
(Finds a set T of edges of G = (V, E) which forms a minimum spanning tree of G.}

var T i set, u, : vertex ; 
begin
initialize T to be empty ;
while |T| < |V| - 1 and |E| > 0 do 
begin
choose edge (u, v) of the lowest weight in E ;
remove (u, v) from E ;
•f edge (u, v) does not form a cycle with edges in T then

*

riraph and Tree Algorithms____________________________

insert (u, v) into T
end ;
If |T| < |V| - 1 then write (‘no spanning tree’) (G is not connected) 
end ;
Kruskal’s algorithm is a greedy algorithm, since it makes the locally optimal (i.e., greedy) 

decision at each stage. In general, this strategy does not guarantee that the result is globally 
optimal, although it Is locally optimal.

Q 27. Explain quick-union and quick-find set algorithms. Give suitable examples.

(PTU, May 2011) Ans. Disjoint Sets : Disjoint sets is a data structure which partitions a set of items. A 
partition is a set of sets such that each item is in one and only one set. It has operations : 

makeset (x) : makes a set from a single item
find (x) : finds the set that x belongs to
union (x, y) : makes the union of the sets containing x and y
We can assume that the items are represented by integers, which can be the index into 

an array.
There are two popular implementation for disjoint sets, using linked lists or using trees. 
Quick Find : Uses linked lists to represent the sets, and an array, called representative 

array, which is indexed by the item number and the value give the set name (smallest integer 
number in the set). The operation makeset is obvious, update the representative array and 

make the single element link list. The cost is ®(1).

The operation find is also obvious, just access the representative array. The cost is ® 
(1).

The operation union is more expensive. Join the two link list (easy enough) but the 
representative arrays must be update. The cost is linear in the set size.

For sequence of n random unions the cost is ® (n2). We can do better if the set name 
of the representative array is the larger set, then algorithm only needs to update the 
representative array for the smaller array. This is called union by size. Then the cost is O (n 
log n) because the set size doubles after each union. The cost of n - 1 unions and m finds is 
O (n log n + m).

Quick Union : The implementation uses trees of the items to represent the sets. The 
integer in the root of the tree is the set name. The links of the tree point from the children to 
the parent note this is not a binary tree and the links point in the opposite direction of the most 
trees.

The operation makeset is obvious, just make a single node tree. The cost is (h)(1). The 

operation union links the root of one tree to the root of the other tree. The cost is ®(1).

The operation find requires traversing up the tree and cost ® (h), where h is the height 
of the tree. The height could be on the order of the set size. To control the cost, the union
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Kruskal’s algorithm.tree for the graph using

124___________________ _______________ ________________
should make the smaller tree in the union operation the sub tree of the larger tree. This is 
union by size (by set size) or union by ran^ (by tree height). Naturally, this requires storing the 
tree size or height in the root. Using union by size or rank the height of the tree is logarithm 
with the number of unions (in other words the tree/set size). The cost for n - 1 unions and m 

finds is 0 (n + m log n).We can do even better by using path compression. Path compression makes every 
node encounter during a find linked with the root directly. Then a sequence of n - 1 unions 

and m finds is only slightly more than linear in n and m.
Q 28. Consider the undirected weighted graph In fig 1. Find a minimum spanning 

(PTU, Dec. 2013)

Ans.

C F 5 G

Fig. 1
C-D-> 1 
A-B->2

B E 3 H A-C—> 3
2/^

A\ 
3\>

5/ 

>< 4 l/ 8
E-H-> 3 
B-D-» 4 
E-F->4

C F 5 G D-E->5 
, F-G->5 

D-F->6
F - H-> 7
G-H-> 8

Step 2. A - B -> 2

Q 29. What is difference between Dijkstra and Bellman Ford algorithms for solving 
single source shortest path problem? (PTU, May 2014)

Ans. Both Dijkstra and Bellman Ford solves the single source shortest path problem 
but the primary difference in the function of the two algorithm is that Dijkstra's algorithm can 
not handle negative edge weights. Bellman-Ford’s algorithm can handle some edges with 
negative weights. It must be remembered, however, that if there is a negative cycle there is 
no shortest path.

. Q 30. What is difference between Prim’s and Kruskal’s algorithm for finding 
minimum cost spanning tree? (PTU, Dec. 2019, 2017 ; May 2014)

Ans. Prim’s algorithm is for obtaining minimum spanning tree by selecting the adjacent 
vertices of already selected vertices.

Kruskal’s algorithm is for obtaining minimum spanning tree but it is not necessary to 
choose adjacent vertices of already selected vertices.

The main difference between Prim’s and kruskal’s is that kruskal does not require the 
edge e to be connected to the evolving tree T. That means that T isn’t necessarily connected 
at intermediate steps in kruskal’s algorithm. So strictly speaking the T in Kruskal's algorithm is 
a forest and not a tree. Kruskal’s algorithm can also be implemented easily in O(m log n) 
time.

□ Both have the same output i.e. minimum spanning tree.
□ Kruskal’s begins with forest and merge into a tree.
□ Prim’s always stays as a tree.
□ Unlike Kruskal’s Prims doesn’t need to see all of the graph at once. It can deal with
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it one piece at a time. It also doesn't need to worry If adding an edge will create a 
cycle since this algorithm deals primarily with the nodes, and not the edges.

Q 31. What is the difference between a Live Node and Dead Node ?
(PTU, Dec. 2014)

Ans. Live Node : A node which has been generated and all of whose children have not

yet been generated is called as a live node.Dead node : Dead node is defined as a generated node, which is to be expanded

further all of whose children have been generated.Q 32. State shortest path problem for a graph. (PTU, May 2015)
Ans. In graph theory, the shortest path problem is the problem of finding a path between 

two vertices (or nodes) in a graph such that the sum of the weigths of its constituent edges is 
minimized. The shortest path problem can be defined for graphs whether undirected, directed

or mixed.Q 33. Explain concept of graph coloring with suitable example. 
Ans. There are three main concepts are related to graph coloring.

1. Vertex coloring (the default)

2. Edge colonng
3. Face coloring (planar)t Vortex coloring : Vertex coloring is the most common graph coloring problem The 

pr^tem is, given n cofors, find a way of coloring the vertices of a graph such that no two 

adjacerrt vertices are colored using same color.

edges share the same color3. Face coloring : A face coloring of a planar graph assigns a color to each face or 

region so that no two faces that share a boundary share the same color.
Chromatic number : The smallest number of colors needed to color a graph G Is 

catted its chromatic number. For example, the following can be colored minimum 3 colors.

1
Graph and Tree Algorithms__________________________ _______________

Q 34. Explain transitive closure of a graph.
Ans. Given a directed graph, find out if a vertex j is reachable from another vertex 1 for 

all vertex parts (i, j) in the given graph. Here reachable mean that there is a path from vertex 
i to j. The reachability matrix is called transitive closure of a graph.

e.g. : Consider below graph

Transitive closure of above graph is
1111

1111

1111

0 0 0 1
The graph is given in the form of adjacency matrix say graph [v] [v] where graph (i] [j] is

1. If there is an edge, from vertex i to vertex j or i is equal to j, otherwise graph (I] [j] is 0. Floyd 
Warshall Algorithms can be used, we can calculate the distance matrix dist [v] [v] using Floyd 
Warshall, If dist [i] [j] is infinite, then j is not reachable from I, otherwise j is reachable and 
value of diet [i] [j] will be less than V. Instead of directly using Floyd Warshall, we can optimize 
It in terms of space and time, for this particular problem. Following are the optimizations .

1. Instead of Integer resultant matrix (dist [v] [v] in floyd warshall). we can create a 
boolean reachability matrix reach [vj [vj. The value reach [i] [jj will be I if j is reachable 
from I, otherwise 0.

2. Instead of using arithmatic operations, we can use logical operations. For arthematic 
operation V, logical and '&&’ Is used, and for mln, logical or *||’ Is used.

Q 35. What Is advantage of binary search over linear search ? Also state limitations 
of binary search. (PTU, May 2017)

Ana. Binary search method is a method to search a specific data from a large volume 
of data. In this method, data at the middle Is checked, If it is found search Is completed 
otherwise that half Is selected In which data can be found and this process continues till the 
data Is found e.g. as we do to find a word In a dictionary.

Advantages of binary search on linear search : A binary search runs In 0 (log n) 
time, compared to linear search’s 0(n) time. What this means Is that the more elements aro 
present In the search array, the faster a binary search will be compared to a linear search. As 
an example, given 100 elements, a binary search will discover the Item using no more tljan 7
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iterations, wjhile a linear search will require upto 100 iterations, going to upto 1000 elements 
requires only up to 10 iterations, compared to linear search's 1000 maximum iterations. The 
downside to binary search, however is, it only operates on a sorted array, which means the 

data must be pre-sorted using some means.Disadvantages of using Binary search : The binary search algorithm works as access 
the middle element of list. This means that the list must be stored in some type of array, the 
problem occur when inserting an array require move down the elements of the list and in 

case of deleting from an array moved up the elements of the list.
Q 36. Explain Ford Fulkerson Algorithm for Maximum flow problem.
Ans. Given a graph which represents a flow network where every edge has a capacity. 

Also given two vertices source ‘s’ and sink *+’ in the graph, find the maximum possible flow 

from s to t with following constraints :
(a) Flow on an edge doesn’t exceed the given capacity of the edge.
(b) Incoming, flow is equal to outgoing flow, for every vertex except s and t.

e.g. Consider the following graph from CLRS book.

The maximum possible flow in the above graph is 23.

Prerequisite : Max flow problem
Introduction
Ford-Fulkerson Algorithm : The following is simple idea of Ford-Fulkerson algorithm

1. Start with initial flow as 0.
2. While there is a augmenting path from source to sink

Add this path-flow to flow
3. Return Flow
Time Complexity : Time Complexity of the above algorithm is 0 (max - flow * e). We

graph and Tree Algorithms_________________________ _ _______________ ____

run a loop while there is an augmenting path. In worst case, we may add 1 unit flow in even/ 
iteration. Therefore the time complexity becomes 0 (max - flow * e).

How to Implement the above simple algorithms : Let us first define the concept of 
Residual Graph. Which is needed for understanding the implementation. Residual Graph is a 
flow network is a graph which indicates additional possible flow. If there is a path from source 
to sink in residual graph, then it is possible to add flow. Every edge of a residual graph has a 
value called residual capacity which is equal to original capacity of the edge minus current 
flow. Residual capacity is basically the current capacity of the edge. Residual capacity is 0 If 
there is no edge between two vertices of residual graph. We can initialize the residual graph 
as original graph as there is no initial flow and initially residual capacity is equal to original 
capacity. To find an augmenting path, we can either do a BFS or DFS of the residual graph. 
We have used BFS in below implementation. Using BFS, we can find out of there is a path 
from source to sink. BFS also builds parent [ ] array. Using the parent [ ] array, we traverse 
through the found path and find possible flow through this path by finding minimum residual 
capacity along the path. We later add the found path flow to overall flow.

The important thing is we need to update residual capacities in the residual graph. We 
subtract path flow from all edges along the path and we add path flow along the reverse 
edges. We need to add path flow along reverse edges because we may later need to send 
flow in reverse direction.

Q 37. Define connected components.
Ans. A graph is said to be connected if at least one path exists 

between every pair of vertices in the graph. Alternatively, two vertices 
are defined to be in the same connected component if there exists a 
path between them. Other words we can also say that If G is a 
connected undirected graph, then we can visit all the vertices of the 
graph in the first call to BFS. The subgraph which we obtain after 
traversing the graph using BFS represents the connected component 

(PTU, Dec. 2015)

Connected Graph

of the graph.
Q 38. From a given adjacency list representation of a directed graph how do you 

find the in degree and out degree of the vertices ? Analyse the algorithm.
(PTU, Dec. 2015

Ans.

Directed graph Adjacency-List representation of 
a Directed graph
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The in-degree of a vertex is the number of edges entering it. The out-degree of a 

vertex is the number of edges leaving it.
Q 39. Using Dijkstra’s algorithm find the shortest path from A to for the following

graph.

Ans. Refer to Q.No. 8 
Example :

(PTU, May 2019)

Graph and Tree Algorithms

Q 40 Differentiate between graph and a tree. (PTU, May 2016)
Ans. The graph and the tree both are the collection of nodes and the edges but the 

main difference between the two is that in tree there is an unique node called as root from 
which the subtrees arise whereas in the graph no such root node is there.

Q 41. Extend the Dljkastra's algorithm to find All-palrs-shortest-path (ASSP) 
problem. (PTU, May 2018)

Ans.GIven a directed graph G = (V, E) where each edge (V. W) has a non negative cost 
C [V, W] for all pairs of vertices (V, W) find the cost of the lowest cost path from V to W. 

A generalization of the single source shortest path problem.
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\V® will wMidw « slight extension to this prow

MOh pfch ©f write©*. . * ius. tbd coat of the path,
We must recover wx» path Itsej«*» I • (PTU, DoOi 2019)

0 mX!SbST^**1 m "*,ntt"n ,Or,ed a'reftin dAlnT wjX JSSt is used to Imptoment double ended priority queue, 
«A*^j£SltMH....... nJ•• •« erray containing aMln-Heap. Givepsoudeodo
% JZSaet Mln rH.n] that remain the emailing element from the heap M of 

^iMtunwttTvahte. Analyte the time complexity of your algorithm. Explain 
«i<e n and return* (PTU, Doo, 2019)
your ahjortthm. a >. , .. '

Ana. Prooeduro ' MlmHoaplly (v, I)
Input' v; an army of element* , I: an Index array.
Output v . mwflfted such that element I roots a mln-hoap
I<- left (I);
r <- Right (I);
It | s |v( and v |l| < v [I] then
min <-■ I;
else
mln <- I;
If r a |v| and y (rj < v (min| then
mln v- r;
If mln * I then
Exchange v[l) and v(mln);
mln - Hoaplfy (v. mln);
Procedure MHSA (V, P)
Input : v ; Computer array, sorted by capaolty In dooroaelng ordor, P; sot (quouo) of 

process, •
Output; A scheduling of sot P over sol v,
Build - Mln - Hoap(v);
While P Is not empty do
Doquoue process Pl.
Assign process pl to Computer Vroot locaiod at mln-heaproot,
update the load of Computer Vroot; Mln-Heaplfy (V, root);
Q 44, A max heap la given with n elements and Its height la log(n). Write an 

efficient algorithm to find minimum element In heap. Also calculate the time and apace 
complexity, (PTU, De0, 2019)

Ans, Algorithm ;
In each stop you need traverse both toft and right subtrooa In ordor to aoarch for tho 

minimum element.
Mln element from Max Heap ;
1- Search al last levo) « 0 (n/2) « 0(n)
2 Ftoptece searched element with last element and decrease hoap size by 1-0(1), 

4' tospHy on replaced element » 0(logn)
w complexity of above approach is 0(n),

□ □□

Chapter
h

Tractable and Intractable Problems

Computability of Algorithm*, Computability datse* • P, NP, NP-compIcte and NP-hard. 
Cook'* theorem, Standard NP<omplete problem* and Reduction technique*,

POINTS TO REMEMBER

1, A computational problem Is the encoded format of a problem, which is independent of 
apoolllo Input.

2, A computational problem which only answers In the form of Yes-or-No is called decision 
problom,

3, A doolslon problom le called docldable or effectively solvable If It is a recursive set,

4, P Io riloo known no DTIME/PTIME, which Is one of tho most primary complexity classes

5, A P-problom Io always Iles In NP,

0, Linear programming Is known to be NP and not to bo P, It was proposed by L Khachian 
In 1970.

7, Claoo P Io a class of decision problems that can be solved In polynomial time by 
(dotormlnlstlc) algorithms

0, Claoo NP Is tho class of decision problems that can be solved by nondeterminlstic 
polynomial algorithms.

9, All NP-complete problems are NP-hard problems but some NP-hard problems are not 
NP-comploto problems,

10. Thoro are two types of polynomial reductions These are :

(I) Karp Reductions

(II) Cook Reductions.
11, A Hamiltonian circuit, also known as a Hamlltonial cycle.

12. There are three main concepts are related to graph coloring. These are :

(I) Vertex coloring

(II) Edge coloring

(III) Face coloring

133
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anv instance of problem X can be solved using
m Po/ynomaty many standard computation steps, plus.
S pXS many call on some instance to an algonthm that solves problem Y.

Q 7 Explain Cooks theorem.
Ana. Cook's theorem : The Cook’s theorem shows that the satisfiability problem is 

NP-complete. Without loss of generality we assume that languages in NP are over the alphabet 
{0,1}. Lemma 1, useful for the proof, states that we can restrict the form of a computation of 
a NTM that accepts languages in NP.

Lemma 1 : If L e NP, then L is accepted by a 1-tape NTM N with alphabet {0, 1} such
that for some polynomial p (n), the following properties hold.

1. N’s computation is composed of two phases. These are :
(a) The guessing phase
(b) The checking phase
2. In the guessing phase, N non-deterministically writes a string Uy directly after the 

input string, and in the checking phase, N behaves deterministically.
3. N uses at most p(n) tape cells, never moves its head to the left of w, and takes 

exactly p(n) steps in the checking phase.
A boolean formula f over variable set V is in conjunctive normal form (CNF) if

for some value of m and Ki, 1 < i < m, where literal /jj is either x or x for some xeV. For 

each i, the termV^ Zy is called a clause of the formula, f is satisfiable if there exist a truth 

assignment to the variables in V that sets f to true. CNFSAT is the set of satisfiable Boolean 
formulas in CNF.

Q 8. Prove that CNFSAT is NP-complete.
Ans. It is not hard to show that CNFSATgNP. To prove that CNFSAT is NP-complete, 

we show that for any language LeNP, CNFSAT.

Let L e NP and let N be a NTM accepting L that satisfies the properties of Lemma 1 Let 
he transition function of N be 8. Let the states of N be q0 q„ Let So, S,, S2 denote 0, 1, 

the inZrXrtf Ass^m® that the tape cells are numbered consecutively from the left end of 
form fw ’whichfe 3 r ^hi'T’ * °’ Sh°W h°W ,0 construct a formula in CNF
forrnjw, wh.ch >s sat.sf.able >f and only if w is accepted by N. The variables of fw are as

yprtabte and Intractabte Problems 

 VariablesQ(i, K) HO, fl SP.lA
Range 0 i p(n) 

0 k r
0 i <, p(n) 
0 i j s p(n)

0 S i S p (n) 
0 S j i p (n; 
0S/S2

Meaning At step i of the 
checking phase, 
the state of N is qk.

At step i of the 
checking phase, 
the head of N is 
on tape square j.

At step i of 
the checteng 
phase, the symbol 
in square j is si.

A computation of N naturally corresponds to an assignment of truth values to the variables 
Other assignment to the variables may be meaningless. For example, an assignment with 0 
[i, K] = Q K’J = true, K * K', would imply that N is in two different states at step i, which is 
impossible. Our goal is to construct fw so that it is satisfied only by assignments to the variables 
that correspond to accepting computations of N on w . The clauses of fw are constructed to 
ensure that the following conditions are satisfied :

1. At each step i of the checking phase, N is in exactly 1 state.
2. At each step i, the head is on exactly one tape square.
3. At each step i, there is exactly 1 symbol in each tape square.
4. At step 0 of the checking phase, the state is the initial state of N in its checking 

phase, and the tape contents are wuy for some y.
5. A step p(n) of the checking phase, N is in as accepting state.
6. The configuration of N at the (i + 1)st step follows from that at the ith step, by 

applying the transition function of N.
Consider condition 1. For each i, we have the following clause : 

Q[i, 0] V Q [i, 1] V V Q [i, r].
This clause ensures that the machine is in at least 1 state at step i. We also need

clauses to ensure that N is not both in state qj and qj' :
 

Q[i, j] V Q[i, f ] for each j * j', 0 <, j, j' < r.

Conditions 2 and 3 are handled similarly. Conditions 4 and 5 are quite easy. Finally, 
consider condition 6. For each (i, j, k, I) we add clauses that ensure the following : If at step i, 

T the tape head of N is pointing to the jth tape cell, N is in state qk, si is the symbol under the 
tape head, and (qk, si, qk', si', X) g 8, where Xg{L, R} then at step i + 1, the tape head is 
pointing to the (j + y)th tape cell where y = 1 if X = R and y = -1 if X = L, N is in state qk' ant 
the symbol in cell j is si'. The following clauses ensure this :

 
op] V Hp V S[i, i,Z] V Q [i +1, K']

  
Qp] V Hp V S[i,i,Z] V H(i+1, j + y]

 
op] V Hiu] v spT] vs[i+i, j, r]

All of the clauses for condition 1 to 6 can be computed in polynomial time.
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Q 9. Prove that CLIQUE Is NP-Complete.
Ans. It Is oasy to verify that a graph has a clique of size K If we guess the vertices 

forming the clique. Wo moroly examine the odgos. This can be done In polynomial time.
• We shall now reduce 3-SAT to CLIQUE. We are given a set of K clauses and must build 

a graph which has a clique If and only If the clauses are satisfiable. The literals from the 
clauses become the graph's vertices And collections of three literals shall make up the clique 
in the graph we build. Then a truth assignment which makes at least one literals true per 
clause with force a CLIQUE of size K to appear in the graph. And, If no truth assignment 
satlsflos all of the clauses, there will not be a clique of size K In the graph.

To do this, let every literal In every clause be a vertex of the graph we are building. We wish 
to be able to connect true literals, but not two from the same clause. And two which are complements 
cannot both be true at once. So, connect all of the literals which are not in the same clause and 
are not complement of each other. We are building the graph G = (V, E) where :

V = (<X, i> | X is in the ith clause)

E = {(<X, i>, <Y, j>) | X * Y and i * j)
Now we shall claim that if there were K clauses and there is some truth assignment to 

the variables which satisfies them, then there is a clique of size K in our graph. If the clauses 
are satisfiable then one literal from each clause is true. That is the clique because a collection 
of literals (one from each clause) which are all true cannot contain a literal and its complement. 
And they are all connected by edges because we connected literals not in the same clause 
(except for complements)

On the other hand, suppose that there is a clique of size K in the graph. These K 
vertices must have come from different clauses since no two literals from the same clause 
are connected And, no literal and its complement are in the clique, so setting the truth 
assignment to make the literal in the clique true provides satisfaction. A small inspectibn 
reveals that the above transformation can indeed be carried out in polynomial time. Thus the 
CLIQUE problem has been shown to be NP-hard just as we wished.

□ 10. Write Cooks statement. (PTU, Dec 2005)
Ans. In the celebrated Cook-Levin theorem, Cook proved that the Boolean satisfiability 

problem is NP-complete.
Statement: Satisfiability is in P if and only if P = NP.

0 11. What is Hamittonian Cycle? Give suitable example.
Am. Hamittonian Cycle ; Let G be the given graph which is connected with n vertices. 
SO. G = (V, Ej

vertices, E is the set of edges and n is the number of vertices, 

egdh 3 or a round trip which is start from one point or vertex and
r* once and comes back to its starting point.

path in sc s ^^T^tonian circuit, also known as a Hamiltonian cycle is a
vertex " " touches each vertex exactly once and also return to the

The graph G contain 5 vertices. There are two Hamiltonian cycle in this 
Cycle 1 : 1 -> 2 -> 3 -► 4 -> 5 1

The cycle 1 starts from vertex 1 then vertex 2, 3, 4, 5 and comes back to vertex 1. In 
this cycle each vertex visits exactly once and its starting and ending point is same that is 1 

Cycle 2:1 ->5->4-»3->2->1
The cycle 2 also starts from vertex 1 then visit vertex 5, 4, 3, 2 and comes back to 

vertex 1.
Q 12. What are the steps involved in proving a problem NP-complete ? Specify 

the problems already proved to be NP-complete. (PTU, Dec. 2014)
Ans. First, try to prove it to be NP-hard. by
1. finding a related problem which is already found to be NP-hard (choosing such a 

suitable “source” problem close to your “target’ problem, for the purpose of developing poly- 
trans, is the most difficult step), and then

2. developing a truth-preserving polynomial problem-transformation from that source 
problem to your target problem (You will have to show the transformation - algorithm’s)

(i) Correctness and
(ii) Poly-time complexity.
Significance : If anyone finds poly algorithm for your “target’ problem, then by using 

your poly-trans algorithm one would be able to solve that “source” NP-hard problem in poly­
time, or in other words P would be = NP.

Second try to prove that the given problem is in NP class : by developing a polynomial 
algorithm for checking any “Certificate” of any problem-instance.

□ 3-SAT is NP-Complete
□ SAT in CNF is NP-Complete
□ The CLIQUE PROBLEM is NP-Complete
□ The INDEPENDENT SET PROBELM is NP-Complete.

Q 13. Differentiate between deterministic and non-deterministic algorithms.
(PTU, May 2010 ; Dec. 2009)

Ans. Algorithm is deterministic if for a given input the output generated is same for a 
function. A mathematical function is deterministic Hence, the state is known at every step of 

the algorithm.
Algorithm is non deterministic if there are more than one path the algorithm can take. 

Due to this, one cannot determine the next state of the machine running the algorithm. Example 

would be a random function
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Non deterministic machines that can't solve problems in polynomial time are NP. Hence, 
finding a solution to an NP problem is hard but verifying it can be done in polynomial time.

Q 14. What is Np-complete?
(PTU, Dec. 2017, 2016, 2015, 2006 ; May 2018, 2017, 2016, 2014, 2009, 2006) 

Ans. In computational complexity theory, the complexity class NP-complete (abbreviated 
NP-C or NPC) is a class of decision problems. A decision problem L is NP-complete if it is in 
the set of NP problems so that any given solution to the decision problem can be verified in 
polynomial time, and also in the set of NP-hard problems so that any NP problem can be 
converted into L by a transformation of the inputs in polynomial time.

A decision problem d is said to be NP-complete if :
1. It belongs to class NP.
2. Every problem in NP is polynomially reducible to D.

Q 15. What is a NP-Hard problem? (PTU, Dec. 2015 ; May 2017, 2014, 2013, 2008) 
Ans. NP-hard : In spite of its name, to say that problem is NP-hard does not mean that 

it is hard to solve. Rather it means that if we could solve this problem in polynomial time, then 
we could solve all NP problems in polynomial time. Note that for a problem to be NP hard, it 
does not have to be in the class NP. Since, it is widely believed that all NP problems are not 
solvable in polynomial time, it is widely believed that no NP-hard problem is solvable in 
polynomial time.

A notion of an NP-hard problem can be defined more formally by extending the notjon 
of polynomial reducability to problems that are not necessary in class NP including optimization 
problems.

Q 16. What are P and NP problems? (PTU, May 2012)
Ans. Computer scientists use the Big O notation to describe concisely the running time 

of an algorithm. If we say that the running time of an algorithm is quadratic. Or O (h2), it 
means that the running time of an algorithm on an input of size n is limited by a quadratic 
function of n.

Q 17. What are NP-complete algorithms? (PTU, May 2012)
Ans. The polynomial time algorithms are used to solve the NP-complete problem.
It is believe that NP-complete problems do not have polynomial time algorithms and 

therefore are intractable. Secondly, if any single NP-complete problem can be solved in 
polynomial time, then every NP-complete problem has a polynomial time algorithm.

Q 18. What are NP, NP Hard and NP complete problems? Explain by qivinq an 
example of each . aZ (PTU, Dec* 2007)
probfe th/5"*’ NP StandS f°r “Non'de,errninis,ic Polynomial time" and it marks a class of 
key idea to ** S°'Ved polynomial time on a non-deterministic turing machine. The 
paths of soluti rStand's the non_deterrninistic" which means that it is the case when more

Theorobfe 56 Ch°Sen and 3t 'eaSt °ne path solves il in a Premia! time.
way that could . ‘° the S°'UtiOn pa,h and whe,her we can ,ind ,h® deterministic

ay mat could also solve it in polynomial time - marked as P.

rtable and Intractable Problems_______________
11 q  —- 1

In other words, there is a bunch of problems that could be solvedbyTo??^--------~~
machine in polynomial time. Apparently, all problems that could be solved in polynoZT* 
on deterministic machines also belongs to NP problems (they are subset of them bee ° 
non-deterministic machine is somehow more capable). ’ ause

For some problems, for which no deterministic solution was found that would find the 
solution in polynomial time. These problems are marked NP-complete. It is believed (but not 
proved) that it is not possible to find them, hence the intersection between P and NP-complete 

is empty-
See also P = NP problem
NP-hard are “at least as hard as the hardest problems in NP”. The difference is that the 

non-deterministic Turing machine uses some special thing called “oracle” that helps to make 
some decisions in constant time (i.e. clearly very artificial thing that is used only to study 
some decision problem).

Q 19. Differentiate between NP-hard and NP-complete problems with example. 
(PTU, Dec. 2019, 2011, 2009, 2008 May 2015, 2007)

Ans. Formally, NP-complete is a notion for so called recognition (or decision) problems,
i.e., problems defined by a question for which the only two possible answers are a YES or a 
NO. It is defined with respect to polynomial reductions. From Nemhauser and Wolsey “X NP 
is said to be NP-complete if all problems in NP can be polynomially reduced to X.’

NP-hard problems are usually optimization problems whose recognition version is NP- 
complete. For example the TSP-optimization is NP-hard because its TSP-recognition version 
is NP-complete (TSP-rec is as follows : given k is there a tour of length < k?). Nemhauser and 
Wolsey say “A problem is NP-hard if there is an NP-complete problem that can be polynomially 
reduced to it." Thus if a problem is NP-hard it is at least as difficult as any NP-complete 
problem.

The notion of an NP-hard problem can be defined more formally by extending the 
notion of polynomial reducability to problems that are not necessary in class NP including 

optimization problems.
Q 20. Compare NP hard and NP complete problems by taking examples of both. 

(PTU, May 2010)
Ans. NP-complete : A problem that is NP-complete can be solved in polynomial time iff 

all other NP-complete problems can also be solved in polynomial time.
All NP-complete problems are NP-hard but some NP-hard problems are known not to 

be NP-complete.
NP-complete c NP-hard
Q 21. Give an example of NP-complete problem. (PTU, May 2011 I , Dec. 
Ans. An interesting example is the graph isomorphism problem, the 9rap eory pr° 

of determining whether a graph isomorphism exists between two grap s. wo grap , 
isomorphism if one can be transformed into the other simply by renaming ve 

these two problems :
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□ Graph Isomorphism : Is graph G, Isomorphic to graph G2?
□ Subgraph Isomorphism : Is graph G1 isomorphic to a subgraph of graph G2? 
The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem

is suspected to be neither in P nor NP-complete, though it is In NP. This is an example of a 
problem that is thought to be hard, but isn’t thought to be NP-complete. The easiest way to 
prove that some new problem in NP-complete is first to prove that it Is in NP, and then to 
reduce some known NP-complete problem to it. Therefore, it is useful to know a variety of 
NP-complete problems. The list below containts some well-known problems that are NP- 
complete when expressed as decision problems.

□ Boolean satisfiability problem (Sat.)
□ N-puzzle
□ Knapsack problem
□ Hamiltonian path problem
□ Travelling salesman problem
□ Subgraph isomorphism problem
□ Subset sum problem
□ Clique problem
□ Vertex cover problem
□ Independent set problem
□ Dominating set problem
□ Graph coloring problem
To the right is a diagram of some of the problems and the reductions typically used to 

prove their NP-completeness. In this diagram, an arrow from one problem to another indicates 
the direction of the reduction. Note that this diagram is misleading as a description of the 
mathematical relationship between these problems, as there exists a polynomial-time reduction 
between any two NP-complete problems ; but it indicates where demonstrating this polynomial­
time reduction has been easiest.

Q 22. Explain in detail basic concepts of P, NP, NP-hard and NP-complete 
problems. (PTU, May 2013, 2012 ; Dec. 2010, 2009)

Ans. A decision problem is in P if there is a known polynomial-time algorithm to get that 
answer. A decision problem is in NP if there is a known polynomial-time algorithm for a non- 
deterministic machine to get the answer.

Problems known to be in P are trivially in NP - the non-determistic machine just never 
troubles itself to fork another process, and acts just like a deterministic one. There are problems 
that are known to be neither in P nor PN, a simple example is to enumerate all the bit vectors 
of length n. No matter what, that takes 2" steps. (Strictly, a decision problem is in NP if a non- 

eterministic machine can arrive at an answer in poly-time and a deterministic machine can 
verity that the solution is correct in poly time.)
det BUfther® 3re S°me Problems which are known t0 be NP for which no poly-time 

ermis ic algonthm is known ; in other words, we know they’re in NP, but don’t know if they'

Tractable and Intractable Problems

I

re in P The traditional example is the decision-problem version 
problem (decision-TSP). avel,n9 Susman

NP-hard : If an NP-hard problem can be solved in polynomial time then all NP. 
problems can also be solved in polynomial time. -complete

All NP-complete problems are NP-hard but some NP-hard problems are known not t 
be NP-complete. no 0

NP-complete : In computational complexity theory, the complexity class NP-complete 
(abbreviated NP-C or NPC) is a class of decision problems. A decision problem L is NP- 
complete if it is in the set of NP problems so that any given solution to the decision problem 
can be verified in polynomial time, and also in the set of NP-hard problems so that any NP 
problem can be converted into L by a transformation of the inputs in polynomial time.

Q 23. Describe how polynomial-time reductions are used to prove that a problem 
is NP-complete. (PTU, May 2016)

Ans. Polynomial time reductions are used to prove that a problem in NP complete for a
given problem U, the steps involved in proving that it is NP complete are mentioned below : 

1. Show that U is NP.
2. Select a known NP-complete problem V
3. Construct a reduction from V to U.
4. Show that the reduction requires Polynomial time.
These steps show that polynomial time reduction is important to prove a problem is NP

complete. If we can find a polynomial time algorithm for satisfiability, then all other problems 
in NP can be solved in polynomial time. To prove that all other problems reduce to the given 
problem, that is a candidate problem is to be tested for NP completeness, is an involved 
process. An alternative is to show that some other know NP complete problem reduce to the 
new problem to be characterized. The other NP-Complete prob that are quite hardy to prove 
NP completeness of many other problems include 3-SAT, 3-dimensional match up, vertex 
cover, clique etc.When constructing a polynomial time reduction from 3-SAT to a prob, we 
look for structures in the problem that can simulate the variable and clauses in Boolean

formula.
Q 24. What is closest pair problem ? (PTU, Dec. 2019)
Ans. The closest pair problem is a problem of computational geometry given n points in 

metric space, find a pair of points with the smallest distance between thqm.
Q 25. What is a 3SAT problem ? (P™, Dec. 2019)
Ans. 3SAT or the boolean satisfiability problem, is a problem that asks what is the 

fastest algorithm to tell for a given formula in boolean algebra whether it is satisfiable that is 
whether there is some combination of values of the variables that will give.

□ □□
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Approximation algorithms, Randomized algorithms, 
Heuristics and their characteristics.

POINTS TO REMEMBER
\______________________________________________

1. Approximating algorithms : An approximate algorithm is a way of dealing with NP- 
completeness for optimization problem.

2. Heuristies : Heuristic are a flexible technique for quick decisions, particularly when 
working with complex data.

3. Randoized algorithms : Randomized algorithms uses random number to decide, what 
to do next anywhere in its logic.

QUESTION-ANSWERS

Q 1. Define Set cover approximation problem.
Ans. The Set-cover problem : A finite set X and a collection of its subsets F such that

U S = X.

GREEDY-SET-COVER(X, F) ;
U: = X
C: = 0
while U * 0
do Choose SeF with |S n U| -> max 

U: = U-S
C : = Cu{S} 
return C

145
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I

edges have been

Approx-vertex-cover is a p-tlme 2-approxlmation algorithm .

Proof: The algorithm runs in O(V + E time) 
The algorithm clearly returns a vertex cover, since it loops until all 

noved. Each edge removed in line 6 was covered by some vertex of an edge remove

4.

146  _________Since the while-loop is executed at most mln {1x1, |F|) times and each Its Iteration 
requires 0 (1x1. |F|) computations, the running time of GREEDY-SET-Cover Is 0 (1x1. |F|.mln

(1x1. IFI}).Q 2. Explain vertax cover approximation algorithm in detail. (PTU, May 2014) 
Ana* The vertex cover approximation algorithm : Let G be an undirected graph. A 

vertex cover of G is a subset COVER of V such that for every (u,v) e E, at least one of u or

VeCOVER.The vertex cover optimization problem is to find a vertex cover of minimum size =

optimal vertex cover.While finding the optimal vertex cover is an NPC problem, there is a p-tlme approximation 

algorithm that returns a near-optimal vertex cover.
APPROX-VERTEX COVER (G)

1. C = 0
2. E’ = E(G)
3. While E' # 0
4. Let (u, v) be an arbitrary edge of E'

5. C = Cu{u,v}
6. Remove from E' every edge incident on either u or v

7. Return C
Example

Advanced Topics

....(ii)

I*
Let A denote the set of edges removed In line 4 •-------
• The optimal cover C* must contain at least ona• No two edges In A share an end point bar J point of ea°h of th.

/ with an edge In A are removed in line 6 US6 a" ed°e8 ,hat share an9*8 '" * 
Since no two edges In A are covered bv the " Bnclpo'm

|C*| £ |A| 7 hS 3ame vertex'n C’, we have that

Is a lower bound on the size of C*. - -
Each execution of line 4 picks an edge, both of whose- approximate cover C. This gives us an upper bound on the sizedT'^-0-3'^ “> the 

|C| = 2 |A| <
Combining equations (1) and (2), we get 

|C| £ 2 |C*|

Q 3. Prove that
The GREEDY-SET-COVER I. . ROlynoml.i tlm. Wn) 

where p(n) = H(Max {|S| |SeF}) and H (d) = £ (11.
I-P1'

Ans. Proof: Let C be the set cover constructed by the GREEDY-SET-COVER algorithm 
and let C* be a minimum cover.

Let Si be the set chosen at the i-th execution of the while-loop. Furthermore, let x e X be 
covered for the first time by Si. We set the weight Cx of x as follows :

Cx = |------- -------- ----------------T|S|-(S1kj.....uS|-1)|

One has :

id = x Cx 5 Z Z Cx --o
xgX SgC* xgS

We will show later that for any SeF

X Cx <. H (|S|) 

xeS

from (1) and (2) one gets :

|C|< £ H (|S|) s |C*|.H (max {Is! ISeF}) t 

SeC’

Which completes the proof of the theorem. 
To show (2) we define for a fixed S c F and i £ |C| 

Uj = |S-(S1U....USi)|, 
that is, number of elements of S which are not covered by S1,  , Si.



148
LORO^ Design & Analysis of Algorithms

Let u0 = |S| and k be the minimum index such that uK = 0 Then u,, £ u, and uM u„ 

elements of S are covered for the first time by Si for i = 1........K.

One has

K 
£cx = ^^-1-Uj).

|S(-(S,^

Since for any SeF \ {S1........ S>—1}
|S, - (S, u....v Si - 1) I £ |S - (S^ .... uSi — 1 )| = Uj_,
due to the greedy choice of Si, we get:

Zcx
xeS

Since for any integers a, b with a < b it holds :

We get a telescopic sum :

K
ZCx < £(H(Ui-1)-H(ui)) 

xe S i=1

= H(u0) - H(uk) = H(u0)- H(0) 
= H(u0) = H(|S|)

which completes the proof of (2).
Since, H(d)^ In d 4-1, the GREEDY-SET-COVER algorithm has the approximation rate 

(/n |x| + 1).
i

Q 4. Prove that the APPROX*TSP is a polynomial-time 2-approx. algorithm for the 
TSP problem with the triangle inequality.

Ans. Let H* be an optimal Hamilton cycle. We construct a cycle H with C (H) < 2.C (H‘). 
Since T is a minimal spanning tree, one has :

C(T) < C(H*j
We construct a list L of vertices taken in the same order as in the MST-PRIM algorithm 

and get a walk W around T. Since W goes through every edge twice, we get :
C(W) = 2.C(T),

Which implies
C(W) < 2.C(H').

The walk W is, however, not Hamiltonian.
We go through the list L and delete from W the vertices which have already been 

visited.

advanced Topics

149This way we obtain a Hamilton cycle H. The ———C(H)SC(W) e,nan9le inequality prOvides

Therefore, C(H) < 2.C(H‘).

Q 5. Explain TSP approximation problem.
Ans. The TSP Problem : A complete graph G - (V Pr 

C : E -> R > 0 ' ' ’ E) and a we.ght functl0n

The TSP approximation problem is to 
For A £ E define

find a Hamiltonian ^leinGotm^^

C(A) = £ C (u, v)
(u,v) fA

We assume the weights satisfy the triangle inequality for all u vw f v 
APPROX-TSP (G, C):
1. Choose a vertex v e V.
2. Construct a minimum spanning tree T for G rooted in V (use. eg. MST - prim 

algorithm).
3. Construct the pre-order traversal W of T.
4. Construct a Hamilton cycle that visits the vertices in order W.

(a) (b)
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Q 6. Explain independent-set problem.
Ans. The Independent-set problem : An undirected graph G = (V, E). The independent 

set problem is to find a maximum independent set.

For veV and n = |V| define S -
2
n
5>gWand

N(V) = {u g V| dist(u,v) = 1}.
INDEPENDENT-SET(G) ;

S: =0
While V (G) * 0 do

Find v g V with deg(v) = min u g V deg(u)
S : = S kJ {V} j
G : = G - (v kJ N (v))

return S.
The independent-set algorithm computes an independent set S of size q £ n/(8 4-1).
Let Vj be the vertex chosen at step i and let dj = deg (v,).
One has :

Q

y (dj +1) = n. Since at step i we delete di + 1 vertices of degree at least di each, for the 
i=i

»um of degrees Si of the deleted vertices one has Si > di(di + 1). Therefore,

Sn. ^s|2^a.Wtl)

i=1 i=1

This implies

q q 2 n2
5n + n £ y (dj (dj +1) + (dj +1)) = X (di +1) > —

1=1 1-1 M

Q 7. Briefly explain maximum set-cover problem.
Ans. Trie maximum-set-cover-problem : A finite set X. a weight funcfion w . X -> R, a 

collection F of subsets of X and K g IN. .. irx| _
The maximum set cover problem is to find a collection C s F of subsets with |C| - K 

such that w(x) is maximum
xeC

MAXIMUM-COVER(X, F, W) :
U : =X
C: =0

for I: = 1 to K do

advanced Topics

Choose SgF with W (S nu) -> max 
U:=U-S
C : = C o S

return C.

8 y/vrite note on the Approximating algorithms.Q (PTU, May 2019/2017 ; Dec. 2018,

_______I—Al—--- -----------*

mod [c (i) - c* (i) I c* (i)J
We say that an approximate algorithm has a relative bound of c (n) if 

mod [c (i) c* (i) I c* (i)] <; e (n)
Q 9. What are approximation algorithms? Define absolute approximation and 

approximation with example. (PTU, May 2008)

ORWhat is the Importance of approximation algorithms? Also explain the various 
Wpes of approximation algorithms. (P™, May 2011)

Ans. Approximation algorithms are algorithms used to find approximate solutions to

v ^tf ■ uec 2018 201?
Ans. Approximating Algorithms : An approximate algorithm is a’wav of d r’ 2005) 

Np-completeness for optimization problem. This technique does not guarant * 
solution. The goal of an approximation algorithm is to come as close as poslV* 
optimum value in a reasonable amount of time which is at most polynomial time ' 6 ’° 

Suppose we have some optimization problem instance i, which has a large number 
feasible solutions. Also let c (i) be the cost of solution produced by approximate algorithm and 
c* (i) be the cost of optimal solution. For minimization problem, we are interested in findinq 
solution of a given instance i in the set of feasible solutions, such that c (i) Z c* (i) be as small 
as possible. On the other hand, for maximization problem, we are interested in finding a 
solution in the feasible solution set such that c*(i)/c(i) be as small as possible. 

We say that an approximation algorithm for the given problem instance i, has a ratio 
bound of p (n) if for any input of sign n, the cost c of the solution produced by the approximation 
algorithm is within a factor of p (n) of the cost c* of an optimal solution.

That is
max (c (i) I c* (i) / c (i)) £ p (n)

This definition applies for both minimization and maximization problems.
Note that p (n) is always greater than or equal to 1. If solution produced by approximation 

algorithm is true optimal solution then clearly we have p (n) = 1.
\ For a minimization problem, 0 < c‘ (i) < c (i), and hte ratio c (i) / c* (i) gives the factor 

by which the cost of the approximate solution is larger than the cost of an optimal solution. 
Similarly, for a maximization problem, 0 < c (i) < c* (i), and the ratio c* (i) / c (i) gives the 
factor by which the cost of an optimal solution is larger than the cost of the approximate 
solution.

Relative Error : We define the relative error of the approximate algonthm for any inpu 
size as



152 LORD^ Design & Analysis of Algorithms

optimization problems. Approximation algorithms are often associated with NP-hard problems 
; since it is unlikely that there can never be efficient polynomial time exact algorithms solving 
NP-hard problems, one settles for polynomial time sub-optimal solutions. Unlike heuristics, 
which usually only find reasonably good solutions reasonably fast, one wants provable solution 
quality and provable run time bounds. Ideally, the approximation is optimal up to a small 
constant factor (for instance within 5% of the optimal solution). Approximation algorithms are 
increasingly being used for problems where exact polynomial-time algorithms are knowrr but 
are too expensive due to the input size.

A typical example for an approximation algorithm is the one for vertex cover in graphs: 
find an uncovered edge and add both end points to the vertex cover, until none remain. It is 
clear that the resulting cover is at most twice as large as the optimal one. This is a constant 
factor approximation algorithm with a factor of 2.

Definition 1. A is an absolute approximation algorithm if and only if for every instance 
I of problem P, \C* (I) - C (l)| < k for some constant k.

Approximation ratio p (n)
□ Given input to size n
□ C (I) is within a factor p (N) of C* (I) if

<p(n)max

□

'c(I) c-(lf
lc*(l)’ C(l)

Another measure of approximation is given in literature as

~C-(1) sp(n)
Definition 2. An e-aproximation algorithm is a p (n) approximation algorithm for which 

p (n) <, g for some constant g

□ 1-approximation implies C (I) = C‘ (I), resulting in an optional solution

□ An approximation algorithm with a large p (n) may return a solution that is far worse 
than optimal

Approximation scheme
□ Tradeoff between computation time and quality of approximation
□ An algorithm may achieve increasingly smaller p (n) using more and more 

computations time
□ Approximation algorithm takes a value g > 0 as an additional input such that for any 

fixed g, the scheme is a (1 + g) approximation algorithm.

Q 10. What are approximation algorithms? Explain approximation vertex cover.

(PTU, May 2009) Ans. Approximation algorithms are algorithms used to find approximate solutions to 
optimization problems. Approximation algorithms are often associated with NP-hard problems;

advanced Topics_____________________ ____________

since it is unlikely that there can never be ~----------____153
Np-hard problems, one settles for polynomial time sub-optimal sol.Z 9°r',hms Wm« 
which usually only find reasonably good solutions reasonably fast on^"8. Unlike heu"8tics 
quality and provable run time bounds Ideally, the approximation is ™ * Pr°Vable ^ion 
constant factor (for instance within 5% of the optimal solution) Aoorn^ , Up ,0 a 
increasingly being used for problems where exact polynomial-time aloS'°" a'9°ri,hni8 a" 
are too expensive due to the input size. algorithms are known

A typical example for an approximation algorithm is the one for 
find an uncovered edge and add both end points to the vertex cover , 7 graphs- 
clear that the resulting cover is at most twice as large as the optimal’o remain 11 is
factor.approximation algorithm with a factor of 2. ne’ Thls ,s a constant

NP-hard problems vary greatly in their approximability some such „ 
problem, can be approximated within any factor greater than 1 (such a f a i 6 b'" packin9 
algorithms is often called a polynomial time approximation scheme
impossible to approximate within any constant, or even polynomial factor unless p Z 
as the maximum clique problem. umess h = NP, such

NP-hard problems can often be expressed as integer programs (ip\ and » 
in exponential time. Many approximation algorithms emerge from the linear o™ 
relaxation of the integer program. programming

Vertex Cover: The minimum vertex cover problem on a nranh . 
of vertices as possible that between them contain at .east one eVpoint of Z in th" 

graph. It is known tha vertex cover is NP-hard, so we can't really hope to find a Z mS
TgoZ S 9 Pr°b'em 6XaCt,y- ,nS?6ad’ hGre iS 3 S,mple 2-appZX 

Approximate Vertex Cover :
while there are unmarked edge
choose an unmarked edge
mark both its endpoints

To show that this gives a 2-approximation, consider the set E' of all edges the algorithm 
' °oses- None of these edges share a vertex, so any vertex cover must include at least |E'| 
I vertices. The algorithm marks 2 |E'| vertices.

Q 11. What are heuristics ?
Ans. Heuristics are a problem solving method that uses shortents to produce.good 

fo°u9h solutions given a limited time frame or deadline. Hecuristics are a flexible technique 
he 9,Ulck decisions, particularly when working with complex data. Decisions made using an 

stic approach may not necessarily be optimal. Heuristic is derived from the Greek word 
"*an'ng ‘to discover'.

Heuristics facilitate timely decisions. Analysts in every industry use rules of thumb such 
of hi !"'9ent 9uessw°rk, trial and error, process of elimination, past formulas and the analyis 

,aMer th09' '° SOlve a problem HeuristiCS meUl°dS
1 r°ugh short cuts and good enough calculations.
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Q 12. What is randomized algorithm ?Ans. An algorithm that uses random number to decide what to do next anywhere in its 
icgic is caied Randomized Algorithm. For eg, in Randomized quick sort, We use random

mxnber to pk* next P”0*O IX How you can analyse Randomized algorithms ?
Ans. Some randomized algorithms have deterministic time complexity. For example 

rts anvfen«otetton of Merges algorithm has time complexity as O(e). Such algorithms are 
cafcd Mooto Carlo Algorithms and are easier to analyse for worst case. On the other hand 
time complexly of other randomized algorithms is dependent on value of random variable 
Such Randomized algorithm are called Las Vegas Algorithm. These algorithm are typically 
anafysed for expected worst case To compute expected time taken in worst case, all possible 
values of the used random variable needs to be considered in worst case and time taken by 
every posstote values needs to be evaluated. Average of all evaluated times is the expected 

worst case time complexity.
Q 14. What are the advantages of randomized algorithm ?
Ans. 1, The algorithm is usually simple and easy to implement
2 The algorithm is fast with very high probability and/or it produces optimum output

with very high probability.
Q 15. Explain Bin packing problem with the help of an example.
Ans. Given n items of different weights and bins each of capacity c, assign each item to 

a bin such that number to total used bins is minimized. It may be assumed that all items have 

weights smaller than bin capacity.
Input : Weight [] = {4, 8, 1, 4, 2, 1}

Bin capacity C = 10
Output : 2
We need minimum 2 bins to accommodate all items First bin Contains {4, 4, 2} and

second bin {8, 2}
Input : Weight [ ] = (9, 8, 2, 2, 5, 4}

Bin capacity C = 10
Output: 4
We need minimum 4 bins to accomodate all items.
Lower bound : We can always find a lower bound on minimum number of bins required. 

The lower bound can be given as :
Min no. of bins > = ceil ((Total Weight)/(Bin Capacity))
In the above examples, lower bound for first example is “ceil (4 + 8+ 1 + 4 + 2+ 1 )/10 

= 2 and lower bound in second example is” ceil (9 + 8 + 2 + 2 + 5 + 4)/10” = 3 The problem is 
a NP hard problem and finding an exact minimum number of bins takes exponential time. 

These algorithm are for Bin packing problems where items arrive one at a time, each 

must be put in a bin, before considering the next item.
1. Next fit: When processing next item, check if it fits in the same bin as the last item.

i
■
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_ —mm oy 
bins. The sum ot 
j hems ot second 

space is wasted and

order and place 
u.j existing bins, 

is, put it in the bin 
- ‘ „ ..j using

-------bin only if it does not. Next fit Is a simple algorithm. It requlrea
Us® a "® ^ce to process n Items. Next fit Is 2 approximate l.e. the number of bl an<1 
OfO e* “mm is bounded by twice of optional. Consider any two adjacent bln» l-UMClby 
this algo wo blns must be >c; otherwise, Next fit would have put all the 
iW'nS 'n h first The same holds for all other bins. Thus, at most half the 
W’n ‘"I muses at most 2M bins if M is optimal.
s° nex f|t. When processing the next items, scan the previous blns in on 

2 ■ the first bit that fits. Start a new bin only if it does not fit in any of the 
,hS l,en1 Best fit: The idea is to place the next item in the tightest spot. That is. put ti tn tl 

T mallest empty space is left. Best fit can also be implemented in 0(n logn) time 

^tfbalancing Binary search trees.
Se 4 First Fit Decreasing : A trouble with online algorithm is that packing large items is 

specially if they occur late in the sequence. We can circumvent this by sorting the difficu t, e^nce and placing the large items first. With sorting, we get first fit decreasing and 
input se ̂ creasing as offline analogs of online first fit and best fit. First fit decreasing produces 
BSSt ' result for the sample input because items are sorted first. First fit decreasing can 

^e implemented in 0 (n log n) time using self Balancing Binary Search Trees. 
alS° Q 16 Explain Back tracking using No. Queens Puzzle.

Ans Branch and Bound solution, after building a partial solution, we figure out that 
there is no point going any deeper as we are going to hit a dead end. In back tracking, solution we back track when we hit a dead end.

Back tracking : "The idea is to place queen one by one in different columns, starting 
from the left-most column. When we place a queen in a-column, we check for clashes with 
already placed queen. In the current column, If we find a row for which then is no cash, we

1. For the 1st Queen, there are total 8 possibilities we can place 1st Queen in any row 
of first column. Let's place Queen 1 on row 3.

2. After placing 1st Queen, there are 7 possibilities left for the 2nd Queen. But wait, we 
don't really have 7 possibilities. We cannot place Queen 7 on rows 2, 3 or 4 as 
those cells are under attack from Queen 1. So Queen 2 has only 8-3 = 5 valid

positions left.



156 LORD^ Design & Analysis of Algorithms

3 After picking a position for Queen 2, Queen 3 has even fewer options as most of the 
cells in its column are under attack from first 2 Queens. We need to figure out an 
efficient way of keeping track of which cells are under attack. Basically, we have to 
ensure 4 things :
(i) No two queens share a column.
(ii) No two queens share a row.
(Hi) No two queens share a top right to left bottom diagonal.
(iv) No two queens share a top left to bottom right diagonal.

Number 1 is automatic because of the way we store the solution. For number 2, 3 and 
4 we can perform, updates in 0(1) time. The idea is to keep three Boolean arrays that tell us 
which row and which diagonals are occupied.

Now for preprocessing we will create two NxN matrix one for/diagonal and other one 
for\diagonal. Let’s call them slash code and back slash code respectively. The trick is to fill 
them in such a way that two queens sharing a same/diagonal will have the same value in 
matrix slash code, and it they share\diagonal, they will have the same value in backslash 
code matrix.

From NxN matrix, fill slash code and backslash code matrix using below formula :
slash code [row] [col] = row + col
backslash code [row] [col] = row - col + (N - 1)
Now before we place queen i or row j, we first check whether row j is used. Then we 

check whether slash code (j + i) or backslash code (j - i + j) are used. If yes then we have to 
try a different location for queen. If not, then we mark the row and the two diagonals are used 
and recursion queen i + 1. After the recursive call return and before we try another position 
for queen i, we need to reset the row, slash code and back slash code as unused again, like 
in the code

Bound.Q 17. Explain travelling saleshman problem using Branch and
Ans. Given a set of cities and distance between every

pair of cities, the problem is to find the shortest possible tour
that visits every city exactly once and returns to the starting
point. For example. Consider the graph shown in figure on 
right side. ATSP tour in the graph is 0-1— 3-2—0. The cost of 
the tour is 10+25+30+15 which is 80.

Branch and Bound solution : In branch and bound
method, for current node in tree, we compute a bound on best
possible solution that we can get it we down this node. If the bound on best possible solution 
itself is worse than current best, then we ignore the subtree rooted with the node. The cost 
through a node includes two costs.

1. Cost of reaching the node from the root.
2. Cost of reaching an answer from current node to a leaf.
□ In cases of a maximization problem, an upper bounds tells us the maximum possible 

solution if we follow the given node.

adiacentt0

if n ,

(Cost of any tour >

’• we assume we start at vertex “0” forwhich the lower bound has been calculated above.

(Sum of two tour edges 
adjacent to u) >

Where u e v.
Below are minimum cost two 

Least Cost edges 
(0,1), (0, 2) 
(0, 1), (1,3) 
(0,2), (2,3)
(0,3), (1,3)

every node for above shows graph.
Total cost

25
35
45
45

Node
0
1
2
3

Thus a lower bound on the cost of any tour =
1/2 (25 + 35 + 45 + 45) = 75
Lets start enumerating all possible nodes :
1. The Root Node : Without loss of generality,

which the lower bound has been calculated above.
Dealing with Level 2 : The next level enumerates all possible vertices, we can go to 

which are 1,2, 3, N consider we are calculating the vertex 1, since we moved from 0 to 1, our 
tour has now included the edge 0-1. This allows us to make necessary changes in the lower 
bound of the root.

AdvancedToP!£l
□ |n cases of a minimization problem, 

solution if we follow the given mode.
in branch and bound, the challenging part js fin.. " on.

pest possible solution. Below is an idea based to compute^ ,0 <^Pute 
problem. 0Unds fOr T a bOlJ

Cost of any tour can be written as below • 9 Sa|esma
C»s.o).«u,T.(1,2).Ssum:(Surno

4 and in the 10ur T, 01 >“« ease,
Where u e v 
For every vertex 4, If we consider two edges throu h f

overall sum for all vertices would be twice of cost of tour T ’ SUm T
/Ollrvi ♦»*/<'■» f/M.r —■ __ ZQ r ■ 'he

edges adjacent to 

that th ° ,nC*U<^e edge 0—1, we add the edge cost of 0-1, and subtract an edge weight such 
ed © owers bound remains as tight as possible which would be the sum of minimum

esj) 0 and 1 divided by 2. Clealry, the edge subtracted can’t be smaller than this.
Poss hi ea**n9 °ther levels : As we move on to the next level, we again enumerate all 
Consid6 Vert*Ces’ f°r above case going further after 1, we check out for 2, 3, 4,....n.
alter *kGr *Ower bound for 2 as we moved from 1 to 1, we include the edge 1-2 to the tour and 

the new lower bound for this node.

Lower bound (2) = Old lower bound - ((Second minimum edge cost of 1 + 
minimum edge cost of 2)/2) + edge cost (1-2)
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----___ —■— .____ ? How do we character}- __________ ^tW^e'Oor,,h (PTU, Dec. 2(S- Vl » need »PProxln’ ,he 0Xact solution may be what We JQi18u«n alaorlthm® ? . elutions close t° tno Q 200 km does not make n
appr°Ane*Some,tlniea, -PP^X's ’9’00° “"“X soiutlon may be ail that 

interested. For example , problanlB, an aPP g (|me We can charac;.
difference In practice F reaaonable amount o found by lhe approxim^
can expect to find with In a re devlalion o( he" Qf relative. Let A
approximation so|ulion. The deviation cou ( q) p probl0m p Let F0(|)

that1generates a the value of the feasible solution generated

the value of an optimal so u o algorilhms as described below :
6y *' we can characterize a numberr ofWr°*™ (0 approximation algorithm for problem P 

1. Absolute approximation .A is an

if and only if for every insiance I or ,
-"A6 “X) - approximation algorithm if and only if for eve. 

instance I of size n,
\FO(I) - FA(l) \ /FOO) Hn)

rXroximX : A is an .approximation algorithm it and only if for every instance 

I of size n,

\FO(I) - FA(I)\ /F0(l) £ e,
for some constant e, F0(l) is assumed to be greater than zero.
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