k Parformance messurements o4 it " _:”‘"’ s ~
, + algorithms through recurren elations - < e ang
method, Recursion tree method and Masters’ theorem, = : Mttt

lntroducaoh
Asymptotic BNalysis of wmplq/\

10.
11,

12.
13.
14,
15.

16.
17,

POINTS TO REMEMBER @‘

‘An algorithm is a sequence of unambi
obtaining a required output for any leg

Input, output, finiteness, definiteness and effectiveness are the properties of an algorithm,
Time complexity and Space complexity are two types of complexities. ’

The complexity of an algotithm is a function f(n) which measure the time and space used
by an algorithm interm of input size n.

guous instructions for solving a problem, i.e.. for
itimate input in a finite amount of time.

Time complexity is the amount of time required to e_Xecute an algorithm.
Space complexity is the amount of memory required to execute an algorithm.
There are three types of running time analysis

(a) Worst-case '

(b) Average-case

(c) Best-case

Measuring the performance of an algorithm in relation with the input size n is called
order of growth.

-Asymptotic notations are mathematical tools to represent time complexity of algorithms

for asymptotic analysis.

The Big Oh notation is denoted by ‘O’. -

The Big O notation define an upper bound of an algorithm running time, it bounds a
function only from abgve.

Omega notation is denoted by ‘Q'. o o
The gmega notation is used to represent the lower bound of algarithm’s running time.
The theta notation is denoted by 6. | ‘ -
The theta notation bounds a functions from above and below, so it defines ex
asymptotic behavior. ' |

In Polynomial algorithm run time is bounded by a polynomial functul?n. here exponent
In exponential algorithms run time is bounded by an exponential function,

is A

LOID Design & Analysis of Algorithms

I QUESTION-ANSWERS

at is an algorithm?
e (PTU, May 2019 ; Dec. 2019, 2016, 2015, 2013, 2008, 2005, 2004)

e algorithm is defined as a coliection of unambiguous' instructions occuring in
sic sequence and such an algorithm should produce output for given set of input in

0™ smoun't of time or we can also say that an algorithm is & sequence of unambiguous
fnite 8" s for solving a problem, i.e., for obtaining a required output for any legitimate input

nstructio
Problem to be I
solved

at

ns- by

in a finite amount of time.

created
T
particular task
l Correct result
0T o ~Computer - Ouput"
(or mstance) ~ Error if any

Notion of algorithm

Q 2. What are the properties of algorithm?

Ans. Properties of algorithm :

1. Input : It generally requires finite number of inputs.

2. Output : It must produce at least one output.

3. Uniqueness : Each instruction should be clear and unambiguous.

4. Finiteness : It must terminate after a finite number of steps.

S. Effectiveness : The steps of an algorithm must be basic. Basic means, the person
should be able to carry out these steps using pencil and paper without applying any intelligence.

Q 3. What do you mean by complexity of an algorithm? Explain time and space
complexity. (PTU, May 2016, 2013, 2010, 2008 ; Dec. 2010, 2009)

) Ans. Complexity of an algorithm : The complexity of an algorithm is a function f(n)

which measure the time and space used by an algorithm interms of input size n.

‘Time complexity : Time complexity is the amount of time required to execute an
a_!gomhm.orm can also say that the time complexity of an algorithm is the amount of computer
time requued by an algorithm to run to completion.

b The :":umple:nty of an algorithm is commonly expressed using big O notation, which
impp'asse by isp s.c?d \:e ;:nstant§ and lower order terms. When expressed this way, the
e exwamlmple, =i tifn r qu mr::s;cnbed asyrnptohcallyz i.e., as the input size goes to infinity.
ot i b O(n);)‘an algorithm on all inputs of size n is at most 5n3 + 3n, the
Itis difficult to compute the time complexity in terms of physically clocked time. Let us

Introduction "
take the example -of multiuser system. In multiuser system, executing time depends on many
factors such as :

1. System load

2. Number of other programs running

3. Instruction set used

4. Speed of underlying hardware 4
The time complexity is therefore given in terms of frequency count. Frequency count is

a count denoting number of times of execution of statement.

Space complexity : Space complexity is the amount of memory required to execute
an algorithm or we can also say that the space complexity can be defined as the amount of
memory required by an algorithm to run.

To compute the space complexity we use two factors :

Constant and Instance characteristics.

The space requirement S(p) can be given as :

S(p) =C + Sp
Where C is a constant i.e. fixed part and it denotes the space of inputs and outputs. This

space is an amount of space taken by instruction, variables and identifiers. Sp is a space
dependent upon instance characteristics. This is a variable part whose space requirement
depends on particular problem:instance.

Space complexity is normally expressed as an order of magnitude, e.g. O(N A 2) means
that if the size of the problem (N) doubles then four times as much working storage will be

needed.

Q 4. What do you mean by “Worst case-efficiency” of an algorithm?

. (PTU, Dec. 2009)

Ans. The “Worst case-efficiency” of an algorithm is its efficiency for the worst-case
input of size n, which is an input (or inputs) of size n for which the algorithms runs the longest
among all possible inputs of that size.

For example : If you want to sort a list of numbers in ascending order when the numbers
are given in descending order. In this running time will be the longest.

Q 5. What do you mean by “Best case-efficiency” of an algorithm?

Ans. The “Best case-efficiency” of an algorithm is its efficiency for the best-case input
of size n, which is an input (or inputs) of size n for which the algorithm runs the fastest among
all possible inputs of that size.

For example : If you want to sort a list of numbers in ascending order when the numbers
are given in ascending order. In this running time will be the smallest.

Q 6. Define the “Average case-efficiency” of an algorithm.

Ans. The “Average case efficiency” of an algorithm is its efficiency for the input of size
n, for which the algorithm runs between the best case and the worst case among all possible
inputs of that size.

Q 7. How Is an algorithm's time efficiency measured?

Ans. Time efficiency indicates how fast the algorithm runs. An algorithm’s time efficiency

\’,

LORDD Design & Analysis of Algorithms

- input size by counting the number of times its basic operation

X s a function of its ale i
swsu:ﬁ, ‘; s executed. Basic operation is the most time consuming operation in the
{running

algorithm's innermost loop. "
Q 8. Write a short note on order of Growth. . |
: Measuring the performance of an algorithm in relation with the

Ans. Order of Growth :
input size N i called order of growth. For example, the arder of growth for varying input -

of nis as given below :
= logn nlogn n2 o3 20 n!
1 0 0 1 1 2 1
2 i o 4 8 4 2
4 2 8 16 64 16 24
8 3 24 64 512 256 40320 -
16 4 64 256 4096 65,536 Large
32 5 160 1024 32768 4,294,967,296 Very large

Order of growth for some functions

The efficiency analysis framework concentrates on the order of growth of an algorithm'’s
basic operalion count as the principal indicator of the algorithm’s efficiency. To compare and
rank such orders of growth we use three notations.

() O (Big oh) notation .

(W) Q (Big omega) notation

() 6 (Big theta) notation

Q 9. Define best-case step count.
Ans. The best case step count is the minimum number of steps that can be executed
for the given parameters.
Q 10. Define worst case step count.
Ang. The worst case step count is the maximum number of steps that can be executed
for the given parameiers.
Q 11. Define average step count.

Ans. The average step count is the average number of steps executed ‘an instances

Q 12. What nderstand
=y do you u by Asymptotic notation? Also define the following

() Big O (i) Omega (iif) Theta

(PTU, Dec. 2016, 2014, 2013 ; May 2019, 2018, 2017, 2016, 2014, 2013)-

A i . .
- ns Ax;yym m - Asympto‘t;c notatic?ns are mathematical tools to represent
'w”is'p‘ea e r:r asymptotnc' analysis or ‘we can also say that asymptotic
mn“magrvu?le, ﬁme"""”’a“dmy :s > present the n'm? complexity. Using asymptotic notations we
i M!aomﬁo'm'p'esud:asomeam possible”, “slowest possible” or “average time”. There
S ol Dot ; 0 used are called asymptotic notations. These notations
epresent time complexity of algorithms.

Introduction

(1) Big O notation : The big oh notation is denoted by ‘O’. The big O notation g :
on define an

upper bour.|d of an algorithm running time, it bounds a function only from above,
e.g. : Let us consider the case of insertion sort. It takes linear time in best
quadratic time in worst case. We can safely say that the time complexity of insen'me a“.d
O(n ~ 2). Note that O(N ~ 2) also cover linear time. If we use © notation 1o reprc‘:; s\m" -
complexity of insertion sort, we have to use two statements for best and worst casesn‘ e
(a) The worst case time complexity of insertion sort is 8(n » 2). '
(b) The best case time complexity of insertion sort is 8(n).
The Big O notation is useful when we only have upper bound on time complexity of an
algorithm. Many times we easily find an upper bound by simply looking at the algorithm.
O(g(n)) = {f(n) : there exist positive constants ¢ and ng such that 0<=f(n) < = cg(n) for all

n>=n0}

n f(n)=O(g(m)
(i) Omega : Omega notation is denoted by 'Q2". This notation is used to represent the
lower bound of algorithm’s running time. Using omega notation we can denote shortest amount

of time taken by algorithm.
Q notation can be useful when we have lower bound on time complexity of an algorithm.

For a giveh function g(n), we denote by Q (g(n)) the set of functions.
Q(g (n)) = {f(n) : there exist positive constants ¢ and n, such that O<=cg(n) < = f(n) for

all n > = ng}.

o f(n)=0(g(n))

(iil) Theta : The theta notation is denoted by 6. By this method the running time is
between upper bound and lower bound. We can also say that the theta notation bounds a
functions from above and below, so it defines exact asymptotic behavior. A simple way to get
theta notation of an expression is to drop low order term and ignore leading constants. For

example let us consider the following expression i

LA Y . 4 2y laAmm v 27

LORDD Design & Analysis of Algorithms

...
7 R
3n3 + 6n2 + 6000 = O(n? .

Dropping lower order lou('ms) is always fine because there will always be a n, after which
0(n3) beats 6(n?) irrespective of the constants involved.
For a given function g(n), we denote 0(g(n)) is following set = (uncﬂogs- =cl*
0(g(n)) = {{(n) : there exist positive constants ¢1, c2 and ny such that 0 <= c1*g(n)<=
f(n)<= c2 * g(n) for all n>= no} . .
if 1(n) is theta of g(n), then the value f(n) is always between ¢ * g(n) and c2 * g(n) for

large valuca of n(n>=n,). The defination of theta also requires that {(n) must be non-negative
for values of n greater than Ng.

c2g(n)
{(n)
/c 4 g(n)

o f(n)=8(g(n))

Nt

Q 13. Write a short note on polynominal Vs exponential running time.

(PTU, Dec. 2019, 2016 ; May 2015)
Ans. Polynomial Vs. Exponential running time :

Polynomial running time : An algorithm is said to be solvable in polynomial time if the
number of steps required to complete the algorithm for a given input is O(nk) for some non-
negative integer k, where n is the complexity of the input. Polynomial-time algorithms are said
to be “fast™. Most familiar mathematical operations such as addition, subtraction, multiplication
and division, as well as computing square root, powers and logarithms, can be performed in
polynomial time. Computing the digits of most interesting mathematical constants, including
pi and e, can also be done in polynomial time.

All basic arithmetic operations (i.e. addition, subtraction, multiplication, division).
comparison operations, sort operations are considered as polynomial time algorithms.

We can also say that in polynomial algorithm run time is bounded by a polynomial
function (addition, subtraction, muitiplication, division, non-negative integer exponents).

O n, n2, n5000 etc.

Exponential running time : The set of problems which can be solved by an exponential
time algorithms, but for which no polynomial time algorithm is known. An algorithm is said to
be exponential time, if T(n) is upper bounded by 2ro(n), where poly(n) is some polynomial in

n. More formally, an algorithm is exponential time if T(n) is bounded by O(2"¥) for some
constant k.

We can also say that in this run time is bounded by an exponential function, where
exponent is n.

Q nn 2n, etc.

{ntroduction

Q 14. What Is program?

Ans. A program is a set of oparations that a computer 1olows 1 :N. Dec. 2004
properly. The sequence of steps involved in the program help the 1aar 1o it o qun
and to avoid errors.

computer run smoothly
Q 15. What |s set algorithm?

Ans. Set algorithms are input-specialized algorithms thal deal with
basic mathematical set operations over sets with generic elemant types. STL implements 20\
containers with red-black trees. The reason for this is that operalions with sats recuire tas\
and bounded search on set members. This can be achieved with binary search on red-tlack

trees. Red-black trees are one of the ways of getting balanced binary trees and O log N)
bounded binary search time, the other alternatives being AVL trees and B-wrees. AVL ress

are better balanced than red-black trees ;, however, they require more operations o mantain
the balance. B-trees would be a better choice with huge sets. Having set elements in binary
gearch trees assures the precondition that all set elements should be soned. Set algorthms

can be applied on container classes other than sets but in this case programmer should take
care of the sorting.

Q 16. What do you understand by aigorithm evaluation?

(PTU, May 2018 ; Dec. 2007) ‘
Ans. Evaluation is same as the testing of an algorithm. it mainly refers 1o the finding ot
errors by processing an algorithm.

Q 17. Given an example of an ailgorithm which is infinite in nature.
. (PTU, May 2009, 2007 ; Dec. 2009, 2008)
Ans. Divide and conquer is such an algorithm which is infinite in.nature. In this approach,
whole problem is divide into several sub problems. These sub problems are soived recursively
and are smaller in size as compared to original problem.
Q 18. Give two metrics for evaluating an algorithm. (PTU, May 2010)
Ans. Average Bias (Accuracy) : Average bias is one of the conventional meftrics that
has been used in many ways as a measure of accuracy. It averages the errors in predictions
made at all subsequent times after prediction starts for the ith UUT. This metsic can be
extended to average biases over all UUTs to establish overall bias.

1 {] s
B|=-l-z;\(|).
i=1

Sample Standard Deviation (Precision) : Sampled standard dewiation measures [he
dispersion/spread of the error with respect to the sample mean of the errar. This metrics is
restricted to the assumption of normal distribution of the error. It is, therefore, rmmmed
to carry out a visual inspection of the error plots to determine the distribution characteristics
before interpreting this metric

. Y (A0 -m? |

=1

(PTU, May 2008)
vets. They implement

LOIDD Design & Analysis of Algorithms
8

. ’ (PTU, May 2011)
Q 19, What are c;mvctsit\ltml"l:“a Mw“""' for investigating combinatorial structures.
mw“"w"m: inatonial structures of a particular type.

aw.w‘ uct - : of all different structure of a particular type.
g m-llﬁ;d :"w'mm e of a combinatorial structure of a particular

b | me:mmwasawedseampmm
E ¥ used in designing an algorithm.
Q 20. List the various steps s AN
Ans“s"smdhhs@i@mw:
1. Understanding the problem
' DaciSion making on)
gwdwm
g,‘anheimeieexadorwmepmuernm".em
o) Des= sucarssS -
i3 Algorihmic staieges.

(V]

5 Angivss of aigorim
£ impemeni=Son or coding of algorihm.

Q 2i. What is aigorithm? Write the various performance analysis techniques of
aigorihem. Discuss advantages and disadvantages of each. (PTU, Dec. 2018 ; May 2008)
Ans. 2n algorhm s 2 set of ndes for camying out calculation either by hand or on a
machne.
2 An aigorinm s 2 finiis step-by-siep procedure to achieve a required result.
3 An aigodihwn s 2 sequence of computational steps that transform the input into the
OuTpUt

a M&pim'saseqanedopetaﬁaspeﬁo«medondatathathavetobeorganized
in daia suchwes.

| N\Mmismmmnofapmgxamlobeexewtedonaphysical machine
(model of computation).

o There are bmly two ied\nqm 1o analyse the algorithm which are space complexity

fime compiexity. Tame compiexity of an algorithm concems determining an expression of

!he number of sieps needed as a function of the problem size. Since, the step count measure
15 somewhat coarse, one does not aim at

only {0 get asympiotic bounds on the

obtaining an exact step count. Instead, one attempts
Oh) notation. Two other notationa!

siep count. Asymptotic analysis makes use of the O (Big
_ ct:‘s;ructs used by computer scientistis in the analysis of
notation and) (Big Omega) notation. The performance evaluation
of an aigorithm is obtained by totalling the number of " :

ool e akotiien. Ths ling occurrences of each operation when

’ : performance of an algorithm is evaluated as a function of the
input gize n and ie 1o be considered modulo a multiplicative.

-

[ntroduction
il

e s ot s 0

e 9
Q 22. Explain the algorithm of & non-determiniatio finite automation

(PTU, Dee, 2
Ans. Let Q be a finite set and let X be a finite aet of aymbols. Also (ef & 009, 2007)

be & functign
from QX £ 1o RO, let g be a state In Q and let A ba a subset of Q. We call 1he elements of Q
a state, 3 the transition tungtion, qq the Initial slate and A the set of accapling stales.
Then a non-deterministic finite automation is a S-tuple « Q, ¥, ¢, &, A -
Example : Q = {0, 1}, ¥ = {a}, A = (1} the Inilial etata 18 0 and & Is as shown in \he
following table :
State (q) Input (a) Next Stae (5 (q,)
0 a (1)
1 a 0
A state transition diagram for this finite automation is given below :

—O———0

Q 1

If the alphabet T is changed to {a, b} in stead of {a). this is stit an NFA that accepts {a).
Q 23. What is deterministic algorithm? (PTU, May 2012, 2007)
OR
What do you mean by deterministic and non-deterministic algorithms?
Differentiate between them. Write example for each of them. (PTU, Dec. 2018)
Ans. A deterministic algorithm s an aigorithm which, in informal erms, behaves
predicably. Given a particular input. ® will always produce the same output, and the underyng
machine will always pass through the same sequence of states. Deterministic aigonthms are
by far the most studied and familiar kind of algonthm, as weil as one of the mos! practcal,
since they can be run on real machines efficiently.
Formally, a deterministic algorithm computes a mathematcal function ; a funconhas a
unique value for any given input, and the algonthm is a process that produces this parscalat
_value as output.

Non-deterministic : A variety of factors can cause an algorithm o behave m a way
which is not deterministic, or no-deterministic.

Q If it uses extemal state other than the input, such as user input, a giobai vanadie, a
hardware timer value, a random value, or stored disk data.

Q |fit operates in a way that is timing-sensitive, for example if it has muitiple processors
writing to the same data at the same time. In this case, the precise order in which
each processor writes its data will affect the result.

Q If a hardware error causes its state to change in an unexpected way.

Although real programs are rarely purely deterministic, it is easier for humans as well

as other programs to reason about programs that are. For this reason, most programming

A "4

LO3D> Design & Analysis of Algorithms

mming Jjanguages make an effort to prevent to
10 ral

ditions.
ontrolled con))
: non-deterministic algorithm : Algorithm is

inistic ,a;enera‘ed is same for a function. A mathematical
utpu tep of the algorithm.

s known at every step

e e, the state 1 e algorithm can take.
function is deterministiC- He::inistic if there are more than. aee pa.th “t]he alg orithm. Example

Algm;"hm . non-(¢1ietteermine the next state of the machine running g .
. cannot e

Due to this, on€é

would be @ randorr., function. Sish — . ' (PTU, Dec. 2095)

Q 24. What 1S re.verse tZtion is a way of expressing arithmetic exprgssmns tha.(avoids

Ans. Reverse Polish N iorities for evaluation of operators. In ordinary notation, one
the use of brackets: to dgm:nz the brackets tell us that we have to add 3 to 5, then s.ut{tract
might write (3 + 5). (7; t)wo results together. In RPN, the numbers and operétors are listed
e 7, B multnplydl ?1 operator always acts on the most recent numbers in the list. The
ok another.han h%: of as forming a stack, like a pile of plates. The most recent number
numbers ‘:,anxge Lfotlljwi stack. An operator takes the appropriate r?umber of arguments from
?h:efogno: t:e ;ack and replaces them by the result of the opera:hon.

In this notation the above expression would be 35 +72 —

< and especialy g

pifferenc "
deterministic ifforagd

Q 25. What is a recursive relationship? . . . (PTU, Dec(; i?)%i)t

Ans. A recursive relationship can be defined as a relationship that |sb<|ex;:;ess:ahere -
multiple records within one table. As an example if we take an er‘nployee ta. e - e_:—\h‘s o e
some employees who are supervisor and some who are. being .supe!'wse . i
relationship of supervisor and supervisee is called a reCt.Jrswe re|at|onsh|p.' .

More concrete definition of recursive relationship can be a relationship between
information held in a field, group of fields, or complete record and information of the same
type held in one or more other occurrences of that record, or part thereof.

Q 26. What is asymptotic time complexity? (PTU, May 2011 ; Dec. 2007)

Ans. In computer science, the time-complexity of an algorithm quantifies the amount of

time taken by an algorithm to run as a function of the size of the input to the problem. The

time complexity of an algorithm is commonly expressed using big O notation, which supresses

multiplicative constant and lower order terms. When expressed this way, the time complexity

is said to be described asymptotially, i.e., as the input size goes to infinity. For example, if the

time required by an algorithm on all inputs of size n is at most 5n3 + 3n, the asymptotic time

complexity is O (n3).

Q 27. Define big omega notation (Q) and little omega notation ().

(PTU, Dec. 2008, 2005)

Ans. Big Omega Notation (Q) : A function t (n) is said to be in Q (g(n)), denoted t (n)

€ Q (g(n)), if t (n) is bounded below by some positive constant multiple of g (n) for all large n,

i.e., if there exist some positive constant ¢ and some non negative integer ny such that
T(n)<cg(n)forn=n,

Introduction

A1
Little Omega Notation (») : The function in © (g) are the larger function ot Q (9).

Conspiring ‘g’ be set of function from the non-negative integer into the positive real numbers.
Then o (g) is set of function ‘f' also from the non-negative integers into the positive real

numbers, such that lim m)— = 0.
n—o g(n)
Q 28. Differentiate between space complexity and time space trade off.
(PTU, May 2009)

Ans. A space-time or time-memory tradeoff is a situation where the memory use can
pe reduced at the cost of slower program execution (and, conversely, the computational time
can be reduced at the cost of increased memory use). As the relative costs of CPU cycles,
RAM space, and hard drive space change, hard drive space has for some time been getting
cheaper at a much faster rater than other components of computers, the appropriate choices

for space-time tradeoffs have changed radically. Often, by exploiting a space-time tradeoff, a
program can be made to run much faster.

Q29.1s2n+2=0(2n + 1)?
Ans. No, 2n + 2 is not equal to O (2n + 1).
Q 30. Define recurrence relation.

(PTU, May 2010)

(PTU, Dec. 2010, 2008 ; May 2013, 2010)
Ans. A recurrence relation is an equation that recursively defines a sequence : each
‘term of the sequence is defined as a function of the preceeding terms. The term difference
equation sometimes (and for the purposes of this article) refers to a specific type of recurrence

relation. However, ‘difference equation’ is. frequently used to refer to any recurrence relation.
An example of a recurrence relation is the logistic map :

Xpe1 = 1Xp (1 = %)

Some simply defined recurrence relations can have very complex (chaotic) behaviours,
and they are a part of the field of matHematics known as non-linear analysis. Solving a
recurrence relation means obtaining a closed-form solution : a non-recursive function of n.

A recurrence relation for the sequence {a,} is an equation that expresses a,, is terms of
one or more of the previous terms of the sequence, namely, a,, ay, ..., a,_4, for all integers n
with n > ny, where ng is a non-negative integer.

A sequence is called a solution of a recurrence relation if it terms satisfy the recurrence
relation. In other words, a recurrence relation is like a recursively defined sequence, but
without specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have (and usually has) multiple solutions.

If both the initial conditions and the recurrence relation are specified, then the sequence is
uniquely determined.

Example : Consider the recurrence relation

a, =2a,y—a,,forn=2 3 4, ..

Is the sequence {a,} with a, = 3, a solution of this recurrence relation.
For n > 2 we see that

28, 1-8,2=2@3(N=1)-3(n-2)=3n=a,.
Therefore, {a,} with a, = 3n is a solution of the recurrence relation.

LOIDS Design & Analysis of Algorithms

12
5f complexity?
Q 31. What do you mean by term order of co. (l‘:TU. May 2012 ; Dec. 2010, 2009)

Ans. Complexity can then be characterized by lack of symn"vetl’y or xsymtrr}::z:rai:)kr:n&
by the fact that no part or aspect of a complex entity can provide sufficien

i i ts t
actually or statistically predict the properties of the others parts. This again connects to the
difficulty of modelling associated with complex systems.

(PTU, May 2009)

tation (o).
Q 32. Define Big oh Notation (O) and Little oh No (
" Ans. Big oh Notation (0) : f (n) is o (g(n)) if f (n) is asymptotically less than or equal to

g (n). _ '
Little oh Notation (o) : f (n) is o (g(n)) if f (n) is asymptotically strictly less than to g (n).
Q 33. What do you mean by worst case analysis? (PTU, May 20.13 ; Dec. 2010)
Ans. The worst case time complexity is the function define by the maxumun:l amount of
time needed by an algorithm for an input of size, ‘n’. Thus, it is the function defined by the

maximum number of steps taken on any instance of size ‘n’.
o (PTU, Dec. 2011)

Q 34. List different notions of complexity of an algorithm.
Ans. Big O notation, Omega notation, Theta notation.
Q 35. Find the big of (0) notation for the following function

(i) f (n) = 5995 (ii) f (n) = 3n + 5 (iii) f (n) = 69n2 + 35 (iv) f (n) = 703 + 35 n2 + 45n
(PTU, Dec. 2005)

Ans. (i) f (n) = 5995
f(n) <5995 * 1, where ¢ = 5995, and ng=0
thus, big of (0) notation is f (n) = 0 (1).
(i)f(n)=3n+5
for f (n) = 3n + 5, where ‘'n’ is at least 5n>5
3n+5<3n+n<4n
So, f (n) = 0 (n)
(iii) f (n) = 69n2 + 35 forn > 35 ‘
69n2 + 35 < 69n2 + n
Now, for n < n2
69n2 + n < 69n2 + n2 < 70n2 {c = 70, ny = 1)
So, f(n) =0 (n2).
(iv) f (n) = 70n3 + 35n2 + 45n
for n2 > 45n
70n3 + 35n2 + 45n < 70n3 + 35n2 + n2 < 70n3 + 36n2
Now for n3 > 36n2 . ?
70n3 + 36n2 < 70n3 + n3 < 71n3, {C = 71, ng = 70)

S0, f(n) = O (nd).

Introduction
13

as .

solution and prove it by induction.

Q 36. Argue on the following relation
() Is 2n+1 = o (2n)2

(i) Is 22n = o (@) (PTU, May 2008 Dec. 2005)

Ans. (i) 2n+1 = 0 (2n)?
For O-notation we have to show that function is asymptotically bounded by upper boung
S
; f(n) <Cg (n)
let, f (n) = 2n+1 ""((12))

=21 <Cg(n=2n2c< Cg (n)
=2n.2<2"5¢c>2

since, f(n) =0 (g (n))

= 2n+1 = 0 (2n).

(i) 220 = g (2n)2
Show that f (n) < Cg (n)

= 22n < C.2n
2n
= Cc< 2
2"
— C =22nn_pn
= - C'22" (nota constant) 5
. does not have any fixed value, because where n change c changed so ¢ is not a constant
Hence, 22n » 0 (2n). ‘

n=4T (n-1) + 27 with T (0) = 6. Guess the

‘Q 37. Consider the recurrence T,
(PTU, Dec. 2005)

e
Ans. Toa=6.404 > 4" ol
i=1

n
=64"+4" 3 4 o
i=1

=64"4qn 1 E(l)'
2 &2
i=0
n
=s4"+[1—(%) 4"
=7.40 — 2n

LO3DD Design & Analysis of Algotithms

rithms.

ze the algo
d analy. (PTU, Dec. 2009 ; May 2008)

14
Q 38. Explain how to validate an

e he basis of analysis? Explain
What is the ba .
u analyze in an algorithm? (PTU, May 2012)

about an algorithm, we can ‘analyze’ it. By this we mean to

& vion of the algorithm and to draw conclusions about how the implementation
study the specification 0 m - will perform in general. But what can we analyze? We can
of that algorithm i the PFOQ’:ing time of a program as & function of its inputs ;

a ge:en":;:: ::: ::;' or maximum memory space needed for program data ;

a Dete

i de ;

ine the total size of the program code ; -

= g:tfn":i:: whether the program correctly computes the desired result ;
3 Determine the complexity of the program - e.g., how easy is to read, understand,

and modify ; and . .
O Determine the robustness of the program - e.g. how well does it deal with unexpected

What do yo

Ans. In order to learn more

or erroneous inputs? _ _
Validate Algorithms : The process of measuring the effectiveness of an algorithm

before it is coded to know the algorithm is correct for every possible input. This process is

called validation.
Once an algorithm has been devised it become necessary to show that it works it

computer the correct to all possible, legal input. One simply way is to code into a program.
However, converting the algorithm into program is a time consuming process. Hence, it is
essential to be reasonably sure about the effectiveness of the algorithm before it is coded.
This process, at the algorithm level, is called ‘validation’. Several mathematicaland other
empirical method of validation are available. Providing the validation of an algorithm is a fairly
complex process and most often a complete theoretical validation though desirable, may not

be provided. Alternatively, algorithm segment, which have been proved elsewhere may be

used and the overall working algorithm may be empirically validated for several test cases.
Such method, although suffice in most cases.

Q 39. Find the Big-Oh notation for the following function :

(i) 4x2 - 5x + 3 :

(i) f (x) = (x + 5) log, (3x2 + 7) is O (x log, x)

’ 2 >
X |
(iii) (x) = (;iogzhx) wa ks
o (PTU, May 2012)
Ans. (i) f(x)=ax2 _ 5x , 3
If (9] = |4x2 - 5x 4+ 3|
<[4x2| + [=5x] | 13]
S4x2 + 5x + 3, forall x > 0
S4x2 4+ 552 3x2, for all x > 1

Introduction

<12x2, for all x > 1 T

We conclude that f (x) is O (x2). Observe that C = 12 and K
big-O
(i) f(x) = (x + 5) log, (3x2 + 7)
If ()] = [(x + 5) log, (3x2 + 7)|
= (X + 5) log, (3x2 + 7), for all x > —5
< (X + 5x) log, (3x2 + 7x2), for all x > 1
< Bx log, (10x2), for all x > 1
< 6x log, (x3), for all x > 10
" : < 18x log, x, for all x > 10.
o big_o(.a conclude that f (x) is O (x log, x). Observe that C = 18 and K = 10 from the definition

=1 from the definition of

2
X< +5logs x
(iii) f(x) = (\gz)
‘ (2x +1)
since log, x < x for all x > 0, we conclude that
5 log, x < 5x < 5x2, for all x > 1
Since 2x + 1 > 2x, we conclude that

1 1
2%+ 1 < ox forall x > 0

X2 +5logs x

f
It (ol 2x +1

2
o X EBO0E o il in
2X +

x2 + 5x2

s—zx——,forallx>1
< 3x, for all x > 1
big‘O.We conclude that f (x) is O (x). Observe that C = 3 and K = 1 from the definition of
Q 40. Consider the recurrence :
T (n) < 4T (n/2) + n2
TM)=1
Find the solution. ' (PTU, Dec. 2004)
Ans. Let T (n) = R (n). nv, substitute this value into the original recurrence.
R (n) .n® <4 (n2)e R (n/2) + n2
Put a = 2, so as to cancle out the multiplicative factor of 4.

Lo3D> Design & Analysis of Algorithmg
16 ;
TR <4 MARED T
- < +n? ‘
n2R(n) < n2 R (n/2)
- n2, we have
Dividing through by n* = N% .
' R (n) <R M2 |
i log n), thus, .
il ?l'((n? =R (n). n¢ {a =2}
T(n)=R (n). n? |
Tt 'og;"')'; (PTU, Dec. 2009, 2008 ; May 2009)
ram? '
P r%emm:;;:;ge \hat describes a computer program or routine that is
Ans. Re-entrant is an ainj memory can be shared by multiple users. Reentrant code is
written so that me sa’"e c::t)j(ng systems and in applications intended to be shared in multi.
commonly required in zlp;er writes a reentrant program by making sure that no instructions
oty oo ? p';o?’rfa"a”ab'e values in other instructions within the program. Each time th e
i en ‘ ' .
":od,rgmﬂz :z:ered for a user, a data area is obtained in which to keep all theivaname B
:):gthat user. The data area is in another part of memory from the pregam |tS?|f. When the
ogram s Interupted to give another user & turn to use the program, information about the
‘ata area associated with that user is saved. When the interrupted user Of the program is
nce again given control of the program, information in the saved data area is recovered and
ie program can be reentered without concern that the previous user has changed some
struction within the program.

Q 42. Define non-deterministic algorithm.

(PTU, May 2013)
Ans. Non-deterministic algorithm : A non-deterministic algorithm is one in which for

given input instance each intermediate step has one or more possibilities. This means that
ere may be more than one path from which the algorithm may arbitrarily choose one. Not
i paths terminate successfully to give the desired output. The non-deterministic algorithm
forks in such a way so as to always choose a path that terminates successfully, thus always
jiving the correct result. We can also say that algorithm is non-deterministic if there are more

han one path the algorithm can take. Due to this, one can not determine the next state of the
machine running the algorithm. Example would be a random function.

Q 43. Explain the tradeoff between time and space while analyzing an algorithm.

Ans. A space-ti (PTU, May 2013)
; Ce-time tradeoff refers to a choj e ; g
processing problem that allo ice between algorithmic solutions of a da

- increasing the space to stor:/t:::z to decrea.se the running time of an algorithmic solution by
at the cost of increaseg rosnhs ata and vice versa. The computation time can be reduced
hard drive pace change harg ‘;ynvuse. As the relative costs of CPU cycles, RAM space, and
faster rate than other compon € space has for some time been getting cheaper at a much
tradeoffs haye changed ents of Computers, the appropriate choice for space-time

radically, o)
be made to run mycp faster. V- Often, by exploiting a space-time tradeoff, a program can

h‘i_—A;

Introduction

A7
Q 44. What are the criteria that an algorithm should follow?

(PTU, May 2015 ; Dec. 2013)
Ans. Every algorithm must satisfy the following criteria :

1. Input : There are zero or more quantities which are externally supplied.
2. Output : At least one quantity is produced.

3. Definiteness : Each instruction must be clear and unambiguous.

4. Finiteness : If we trace out the instructions of an algorithm, then for all cases the
algorithm will terminate after a finite number of steps.
' 5. Effectiveness : Every instruction must be sufficiently basic that it can in principle be

carried out by a person using only pencil and paper. It is not enough that each operation be
definite, but it must also be feasible.

Q 45. Arrange the following growth orfler in the increasing order
0O(n3), O(1), O(n log n), O(n), O(n2 log n)

(PTU, Dec. 2013)
Ans. O(1), O(n), O(n log n), O(n2 log n), O(n3)

Q 46. Show that for any real constants a and b, Where b > 0, (n+a)®= 8(nb).

(PTU, Dec. 2017 ; May 2014)
Ans. (n+a)® < (n+|al)®, where n>0
) < (n+n)P for n > |a|
= (2n) .
= C,.nb, where C,=2b
Thus (n+a)d = Q (nb)(1)
(n+a)b > (n—ja})®, where n>0

1
2 (C'zn)® for C', = 5 where n > 2ja|

as n/2 < n—-lal, for n > 2|a|
Thus (n+a)b = O(nP)

....(2)
The result follows from 1 and 2 with C, = 2°, C, = 2-®, and no. > 2|a).

Q 47. What is difference between an algorithm and a program?

(PTU, May- 2014)
Ans. An algorithm is a step by step outline or flowchart how to solve a problem whereas

a program is an implemented coding of a solution to a problem based on the algorithm.
Q 48. Define algorithm validation.

(PTU, May 2016 ;-Dec. 2014)
Ans. The process of measuring the effectiveness of an algorithm before it is coded to

know the algorithm is correct for every possible input. This process is called validation.
Algorithm validation is the process of computing the correct answer for all possible legal

inputs after the algorithm is created or devised. The purpose of the validation is to assure that

the algorithm will work correctly independently of the programming languages. Once the

validation is done the program can be written and the second phase of the validation, which
is referred to as program proving or program verification, begins.

LO»!D) Dcsig_rls: !\nalyslf of Algorithms

E——— (PTU, May 2017 ; Dec. 2014)
gquation ?
R.gumne.

that defines a sequence recursively. [t ig
n oqua“On
equation is a

18

Q 49. What is 8
Ans.The recurrence

in tollowing form n>0 e 1)
normally n T = T(n-1) + N for n> - (2)
T(0)=0

led recurrence relation and equation 2 is called initial condition.
equation 1 is called =t
Here equation can have inf

neral solution to the recursivg funcliof
i 4 Consider a recurrence relation
PR {(n) = 2t (n-1) + 1 for n>1
(=1 ’ o
i t f(n) = 2°~1.
rrence relation we ge
Then by solving this recu

a4
Wr;n 2 i p:ali 3 an:” ion tree method with the help of an example.
Q 50. Ex| recu

Tree method is a pictorial representation of an iteration method which
Ans. Recursion here at each level nodes are expanded. In general, we consider the
is in the form of a tree n:e as root. It is useful when the divide and congues algorithm is used,
second term in re;qrfen el Ub with a good guess. In recursion tree, each root and child
it is sometimes di t";‘: a single subproblem. We sum the costs within each of the levels of the
repfese::)smt::‘e:::t of pre-level costs and then sum all pre-level costs to determine the total
::; t;)' all levels of the recursion. A recursion Tree is best used to generate a good guess,
which can be verified by the substitution method.

inite number of sequences.

cifies some formula.
The n epe

' n 2
Example : Consider T(n) = 2T 5) +n

We have to obtain the asymptotic bound using recursion tree method.
Solution :

T(n/2) T(n/2) T(n/2) T(n/2)

T(n/4) T(n/4) T(nl4) T(n/4)

s

12y 2P — 02
(n12) (n/2) :

(n/4y* (n/4)? (n/4)?

(nIBY (n/8Y (n/B)' (n/BY (niB) (n/8) (niBY (n/B) — |

RRNRRRRR

2
AR ——a 0T
(n/4) 4

8(n)y?

——

introduction

s e

T(n) = Qn2

Q 51. Explain analysis of algorithm through various recusrence reiations.

Ans. Many algorithms are recursive in nature. When we analyse Mmem we g1 3
recurrence relation for time Complex ion. We get running time on an input of 32e n as a
function of n and the running time on input of smaller sizes e.g. in Merge sor, 1o son a pven
array, we divide it in two halves and recurrsively repeat the process for he two halves finally
we merge the results. Time complexity of merge sort can be written as Tin) = 27 (n2) +» Cn

There are many other algorithms like search, Tower of Hanot eic. There are mamiy nree
ways for solving recurrences.

1. Substitution method : We make a guess for the solulion and then we use
mathematical induction to prove the guess is correct or incorrect

e.g. Consider the recurence T(n) = 2T (n/2) +n.

We guess the solution as T(n) = 0(n log n). Now we use Induchion 10 prove our guess.

We need to prove that T(n) < = Cn logn. We can assume that it is true ‘or values smaller
than n

T(n) = 2T(n/2) + n
= Cn/2log Cri2) + n
= Cnlogn — Cnlog2 + n
=Cnlogn-Cn+n
<= Cn logn
2. Recurrence Tree method : In this method, we draw a recurrence tree and calculate
the time taken by every level of tree. Finally, we sum the work done at all levels. To draw the
recurrence tree, we start from the given recurrence and keep drawing tll we find a pattern
among levels. The pattern is typically arithmetic or geometric senes.
e.g. Consider the recurrence relation

T(n) = T(n/4) + T(n/2) + Cn?2
Cn*

T(n/4) T(n/2)

LO3IDD Design & Analysis of Algorithms

- on T(/4) and T(2), we get tollowing recursion

t we further break e

\ree.

/ \ww

Cin'y16

L. Twie) T8 e T
__ own further gives us following -

Cn?

N

C(rY16 C(n?ya

Cy256 Ciy®4 C(n’yB4 C(n')16

/N /N /N /N

To know the value of T(n), we need to calculate sum of tree nodes level by level. If we
sum the above tree level by level, we get the following series
T(n) = C(n"2 + 5(2)/16 + 25(r"2)/256) +
Tre above series is geometrical progression with ratio 5/16. To get an upper bound we
can sum the infinite series we get the sum as (n2)/(1 — 5/16) which is 0 (n?)

3. Master Method : Master method is a direct way to get the solution. The faster

method works onty for following type of recurrences or for occurrences that can be transformed
1o following type.

T(n) = aT(n/b) + f(n)

wherea>=1and b >1
There are following three cases :)

1. #¥n) = Q (n*) Where C < log a then T(n) = Q (,Jog,a)

2.H{(n) = Q (n%) Where C = log,a then T(n) = Q(nclogn)

3.1 ¥(n) = Q (n¢) Where C > log,a then T(n) = Q ({(n))

. :as\er method 1s mainly derived from recurrance tree method. If we draw recurrence
(Y

Tin) = aT(n) + {(n), we can see that the work done at root is f(n) and work done at all
leaves is Q(r¥) where C is log,a. And the height of recurrence tree is logyn.

‘i
x

Introduction

* f(n/b) Hn/o)

2 2 as_
/?\\ /?\ AN /4? N
1(nlb"2) f(no*2) f(nb*2)

(nd*2) f(nb*2) Hnd*2) AR 2) finD*2) Hrnie!2)
o) o o) oy oy oy o o
In recurrence tree method, we caiculate total work done. if the work done at leaves is
polynomically more, then leaves are the dominant part, and our result becomes the workdone
at leaves (case 1). If work done at leaves and root is asymptotically same, then our result
becomes height multiplied by work done at any level (case 2). It work done at root is
asymptotically more, then our result becomes work done at root (case 3})

Q 52. What is the time complexity of Conventional matrix muftiplication method
and Strassen’s matrix multiplication method ? (PTU, May 2018 ; Dec. 2017)

Ans. Conventional matrix multiplication method : The time compiexity of conventional
matrix multiplication method is 0 (n ~ 3).

Strassen’s matrix multiplication method : Complexity of strassen’'s matrix
multiplication method is O(n2-81).

Q 53. Prove that it 1, (n) = O (g4 (n)) and 1, (n) = O (g, (n)), then t, (n) + £, (n) =
0(g; (n) + gz (n)).

(PTU, May 2018 ; Dec. 2018, 2017)
Ans. Let f,(n) = O (g, (n)) and 1, (n) = O (go(n))

This means that there exist constants C,, C, > 0 such that #,(n) < C, g, (n) and fo(n) <
C292(n)

for all n > 0 integers. To prove the claim, we must find some constant C, that causes
fy (n) + f5 (n) < G4 (g4 () + g5 (n)] for all n > O integers,
fy(n) + t; (n) < C, g, (n) + C,g5(n)
<max (G, Cp) gy (n) + max (C,. C;) g, (n)
< max (Cy, Cp) [gy(n) + ga(n)}
= C3(94(n) + go(n)]

We have found a C, = max (C,, C,) that satisfies the definition of big oh proving the
claim.

Q 54. What are explicit and implicit constraints ? (PTU, Dec. 2015)

Ans. Explicit constraints : These are rules that restrict each xi to take values only
from a given set.

N

LO3IDD Design & Analysis of Algorithms Introduction
22 ST 23 3
os 4> =0 2. Using the mathematical induction to find the constants and show that the solution
9. g ks
i=0or1 . _ _ _ works.
it constraints : These are rules which describes the way in which the xi must The substitution method can be used to establish either upper or lower bounds on a “
Implic ht:) e recurrences. This method is powerful, but it can be applied only in cases, when it is easy to '
relate to eacwm‘ i.'; average case analysis ? o (PTU,. De.c. 2015) | guess the form of the answer.
Q 55. rage case analysis : Analyze average runnlr.Ig time over some dlsftflbUtion of Q 59. Algorithm A performs 10n2 basic operations, and algorithm B performs 300
Ans. Averag se analysis requires a notion of an “average” input to an logn basic operations. For what value of N does algorithm B start to show its better

rds, Average ¢a
leads to the pro performance ?

inputs. Other wo blem of devising a probability distribution over inputs.

on in worst case linear time. (PTU, Dec. 2016)

algorithm, which

Q 56. Describe an algorithm to perform selecti

(PTU, Dec. 2017)

Ans: Following is the algorithm : . . |
1. Divide arr [] into [n /5] groups where size of each group is 5 except possibly the last

group which may have less than 5 elements.

Sort the abgve created [n/5] groups and find median of all groups. Create an auxilliary
array mediaif.] and store medians of all [n/5] groups in this median array.

3. Med of Med = K th smallest (median [0 .."[n/5] — 1] [n/10])

Position arg [] around med of Med and obtain its position.

pos = partition (arr, n, med or Med)

5. It pos = = k return med of Med

6. It pos < K.return K th smallest (arr [1 ... pos 1], k)

7. It pos > k return kth smallest (arr [pos + 1...r], k — pos + | — 1.)

Q

57. Differentiate Time complexity from Space complexity.
(PTU, Dec. 2019, 2015)

2,

b

-Ans.

Time complexity Space Complexity

Time complexity refers to the amount | 1. Space complexity refers to the amount
of time spent by the processor for the of memory occupied by a specific
‘completion of thg task. process or task.

The total number of steps involved in a | 2. Space complexity is measured by using
solution to solve a problem is the polynomial amounts of memory, with an
function of the size of the problem, infinite amount of time.

which is the measure of that problem’s
time complexity.

Time complexity estimation is based on | 3. Space complexity estimation is based
execution time. on memory space.

: 58. State the principle of Substitution method, (PTU, Pec. 2015)
o pr'ov::. In substitution method, we guess a bound and then use the mathematical induction
methog - ur guess c‘orrect‘ There are two steps for solving the recurrences by the substitution

1. Guess the form of the solution.

Ans. 10n2 > 300 logn
300

n2 > 30 logn n=>/30
n2 > 30 logn nx5
n2 > 30 .

Q 60. State valid shift with reference to string matching. (PTU, May 2017)

Ans. We formalize the string matching problem as follows : We assume that the text is
an array T[1..n] of length n and that the pattern is an array P [1..m]. We further assume that
the elements of P and T are characters drawn from a finite alphabet * For example, we may
have £ = {0, 1}or £ = {a, b, z}. The character arrays P and T are often called string of
characters. We say that pattern P occurs with shift sintext T. If0<S <sn-mand T [S+1.
S+m] = P[1..m]. If P occurs with shift S in T, then we call s as valid shift otherwise we call s as
an invalid shift. .

Q 61. What do you mean by integer arithmetic? (PTU, Dec. 2018)

Ans. Integer arithmetic means arithmetic without fractions. A computer performing integer
arithmetic ignores any fractions that are derived. For example, 8 divided by 3 would yield the
whole number 2.

Q 62. What is order statistics ? (PTU, May 2019)

Ans. Order statistics are sample values placed in ascending order. The study of order
statistic deals with the applications of there order values and their functions.

Q 63. Take the following list of functions and arrange them in ascending order of
growth rate. That is, if function g(n) immediately follows function f(n) in your list, then
it should be the case that f(n) is O(g (n)).

f,(n) = n25, f, (n) = /2n , f3(N) = n + 10, f4(n) = 10", f5(n) = 100" and f,(n) = nZiogn.

(PTU, May 2019)

Ans. We can start approching this problem by putting f, and fg at the end of the list,

. because these functions are exponential and will grow the fastest. f, < f5 because 10 < 1000.

Other four functions are polynomial and will grow slower than exponential. We can
represnt f, and fy as n25 = n2 x /2 and 2n = 2n°S. Now, we can say that out of all
polynomial function f, will be the slowest because it has the smallest degree. Moreover, and

LOIDD Design & Analysis of Algorithms

24
i i of 1. Furthermore, f, and fg will b
. it has a higher degree Ay . oo
vereipecdt be:z:us:"d polynomial f and f3. because polynomial function grow
e exponefm ':i ?nan; have the highest degree of 2 out of all other polynomial functions
th f4 an
poy aT:bOl:ﬂded ;Y f, because fs = nZlog(n) and f, = N2 /2n and log (n) = O(/27).
and fg wi
: e final order will be :
<f (n) < fs(n) < f, (n) < f‘(n) < f5(n)
3 indicate whether =0(g); or f=Q(g), or both (f=6(g)).
(PTU, May 2019)

Therefore th

fa(n)
Q 64. If f(n)=n! and g(n)=2n, I

f(n) = n! and g(n) = 2n.
f = Q(g) because.
n! > Z, forp (n > 4).

f(n) = n! and g(n) = 2n indicates f = Q(g).]
gesnscebse(t)he substitution method to prove a tight asymptotic lower bound

- i he solution to the recurrence.
“@ "'f‘(,;?b::%’?:/?t) +n? .) (PTU, Dec. 2019)
Ans. Let T(n) = R(n). n3, substitute this value into the original recurrence

R(n).n“ = 4(n/2)2 R(n/2) + ng- 7
to cancel out the multiplicative factor of 4
n2 R(n) = 4(n%/4) R (n/2) + n?
n2R(n) = n2 R(n/2) + n?

Dividing through by n“ = n2, we have
R(n) = n2 R(n/2) + 1
- Since R(n) Z0 (logn), thus
T(n) = R(n).n“ {a = 2}
T(n) = R(n). n2
T(n) Z0(n2logn).

Ans. If
Then

Puta =2, so as

aada

Voo

Chapter
2

Brute-Force, Greedy, Dynamic Programming, Branch and Bound and Backtracking
methodologies for the design of algorithms; Illustrations of these techniques for

Problem-Solving : Bin Packing, Knap Sack, TSP.

" POINTS TO REMEMBER E_':‘

Divide and conquer is a top-down technique for designing algorithms.
Divide and conquer solve the sub-problem recursively (successively and independently).

Fundamental Algorithmic Strategies

2.

3. The divide and conquer paradigm consists of three steps at each level of recursion :
(i) Divide
(i) Conquer
(iii) Combine _

4. Mergesort and quick sort are examples of divide and conquer technique.

5. The merge sort splits the list to be sorted into 2 equal halves and placed them in separated
array. :

6. Quick sort is divide and conquer strategy that works by partitioning ils input elements
according to their value relative to some preselected element (pivot).

7. The idea of the dynamic programming developed by Richard Bellman.

8. Dynamic programming is a technique for solving problems with overlapping subproblems.

9. Dynamic programming is an algorithm design method that can be used when a solution
to the problem is viewed as the result of sequence of decisions.

. 10. Knapsack problem is an example of dynamic programming.

11. Dynamic programming is an Bottom-up approach.

12. Greedy algorithm is an Top-down approach.
A greedy algorithm is a method for finding a optimal solution to some problem involving

" large, homogeneous data structure (array, tree, graph).

Time complexity of travefing salesman problem is O(n2 2n).

Space Complexity of traveling salesman problem is O(n 2n).

The searching problem deals with finding a given value, called a search key, in a given set
25 :

14,
15,
16.

LORDD Design & Analysis of Algorithms

26 . o the items of a given list in ascending order (or
A ks us to rearrang
ring problem as

17. The so L ;
) - list in which we first check the

ding order). hing an ordered
g?s:e r"sea?rch is a technique for sea:;ong_ ndiscard" half the data. The same procedure
T sed on that compa a match is found or there are no more item left.

middle item and b& -ing half until
is then applied to the g reh is O(lg n).

ity of binary sea :
19. The worst-case mmpbxlgdty of binary search is O(9 e i
each other and exchange them if necessary

_case com|
20. The average Spm values next to

21. &b . ight order.
t them in the ng O(n?) and only suitable to

ity is
22. Bubble sort complexity (n* fog ().

Complexity of merge sortis O :
- i r:y is also known as postal sort, bin sort. o -
iy h node satisfies the heap condition.

i i tree in which eac
A heap is a complete binary ~
gg . Therea‘;re two types of heap or heap tree. These are :

(i) Maxheap
(i) Minheap .
27. Maxheap is also called descending heap.
"8 Minheap is also called ascending heap.

29. The complexity of heap sort is O(n* log (n)). 4 -
30. Quicksort is similar to mergesort : divide-and-conquer recursive algorithm.

31. Quick sort executes in O(n log n) on average, and O(n?) in the worst-case. .)
32. A lower bound of a problem is the least time complexity required for any algorithm which

sort array with small size of data.

can be used to solve this problem. ‘
O -Worst case lower bound
0O Average case lower bound:

33. The selection problem can be solved in O(n log n) tifme.

QUESTION-ANSWERS

Q 1. What are algorithm design techniques? ‘
Ans. Algorithm design techniques (or strategies or paradigm) are general approaches

to solving problems algorithmatically, applicable to a variety of problems from different areas

of computing.

General design techniques are :
1. Brute force

2. Divide and conquer

3. Decrease and conquer

4. Transform and conquer

5. Greedy technique

6. Dynamic programming

7. Backtracking

8. Branch and bound

§

ST SEERS SIS ST RN W ST S)

Fundamental Algorithmic Strategies
27

Q 2. Give brief concept of divide and conquer.
(PTU, Dec. 2016 ; May 2019, 201
‘ ‘ s] f 8, 2013
Ans. Pqu and conquer is an important general technique for designing algorithms)
1. Divide instance of problem into two or more smaller instances. '
2. Solve smaller instances recursively.
3. Obtain solution to original (larger) instance by combining these solutions.

A problem of
sizen
(instance)

Subproblem
1 of size n/2

Subproblem
2 of size n/2

A solution to A solution to
subproblem 1 subproblem 2
—]

N

A solution to the
original problem

Divide and Conquer Examples
Sorting : Merge sort and quicksort
Q 3. Explain how analysis of linear search is done with a suitable illustration.
. (PTU, Dec. 2014)
Ans. Count how many times the key is compared to an array element.
Best case : The key is the first element in the array. Number of comparisons of an
array element to the key : 1 = O(1)

. Worst case : The key is the last element in the array or the key is not in the array
Number of comparisons : n = O(n) .
Average case : The key is equally likely to be in any position in the array.

If the key is in the first array position : 1 comparison
If the key is in the second array position : 2 comparison

It the key is in the ith position : i comparisons

So average all these possibilities : (1+2+3+. . . +n)/n =
[n(n+1)/2)/n = (n+1)/2 comparisons
The average number of comparisons is (n+1)/2 = O(n).

Q 4. Define merge sort.
Ans. Merge sort is a perfect example of a successful application of the divide and

LO3IDD Design & Analysis of Algorithms

28 e i T N
] It sorts a given-array A0 n-1] by dlw'dlng it into two halvgs AlO....
conquer technique. It 0 em recursively, and then merging the two

vaemer], SOﬂlng eac

i ingle
smaller sorted arrays into a s! I
What is the working principle of Mergeso -
P i ivide-and-conquer, we can obtain a merge soq algorithm.
grine” Usgrlu)g :jne"t:e n-elements into two subseguences of n/2 elements each.
Divide : DV

ively.
3 o subsequences recursive
e Soer:gtgetht: two sorted subsequences o produce the sorted answer.

Combine : M
Example : . 2

F23457aﬂ

Q 6. What is quick sort?

Ans. Quick sort is divide and cong
according 1o their value relative to some preselected element (pivot). It uses rec
the method is also called partition-exchange sort.

Q 7. Define dynamic programming.

Ans. Dynamic programming : Dynamic programming is a
that can be used when a solution to the problem is viewed as
decisions. It is technique for solving problems with overlapping subproblems.

Q 8. What are the features of dynamic programming?

Ans. 1. Optimal solutions to sub problems are retained so as to avoid recompu
their values.

2. Decision sequences containing subsequences that are sub optimal are not considered.

3. k definitely gives the optimal solution always.

Q 9. Write the general procedure of dynamic programming.

Ans. The development of dynamic programming algorithm can be broken into a sequence

of four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of the optimal solution.

ver strategy that works by partitioning it's input elements
ursion and

n algorithm design method
the result of sequence of

ting of

Fundamental Algorithmic Strategies

2
3. Compute the value of an optimal solution in the bottom-up fashion .

4. Construct an optimal solution from the computed information

Q 10. What are the drawbacks of dynamic programming?
Ans. 1. Time and space requirements are high, since storage is needed for ail jevel
2. Optimality should be checked at all levels. '

Q 11. Define principle of optimality. (PTU, Dec. 2016)

Ans. Principle of optimality : It states that an optimal sequence of decisions has the
property _that whenever the initial stage or decisions must constitute an optimal sequence
with regard to stage resulting from the first decision.

Q 12. Give an example of dynamic programming.

(PTU, May 2018 ; Dec. 2018, 2007)

Ans. An example of dynamic programming is knapsack problem. The solution to the
knapsack problem can be viewed as a resuilt of sequence of decisions. We have 1o decide the
value of Xi for 1 < i < n. First we make a decision on X1 and then on X2 and so on. An optimal
sequence of decisions maximizes the object function Spixi.

Q 13. Explain optimal binary search trees.

Ans. One of the principal application of binary search tree is to impiement the operation
of searching. If probabilities of searching for elements of a set are known, it is natural to pose
a question about an optimal binary search tree for which the average number of compansons

in a search is the smallest possible.

Q 14. Define “0-1 knapsack problem.”
Ans. ltems are indivisible, you either take an item or not. Given a knapsack with maximum

capacity W, and a set S consisting of n items. Each item i has some weight w, and benefit
value b; (all w; and W are integer values). Problem is to find max Z b, subject fo Z w W
ieT 17
The problem is called a “0—1" problem because each item must be entirety accepted or

rejected.

Q 15. How to find actual knapsack item?
Ans. Firstly all of the information we need is in the table.
V[n, W] is the maximum value of items that can be placed in the knapsack.

Let i=nand K=W
if V[i, K]:V[i—LK] then

mark the ith item as in the knapsack i =i— 1, K= K-wi
else i=i—1 ' .
Q 16. Write the 0-1 knapsack algorithm and also write the running time of this
algorithm.
Ans. Forw=0to w
V[0, w] =0

30

LO3D> Design & Analysis of A|9°fithms

fori=1ton
V[i,0] =0
fori=1ton
forw =0t W)
if wi w // item i can be part of the solution
WwWi< = .
ifbi+v1i—1.w-wi]>vn—_1,w] ‘
V[i, w] =bi+V[t—1,w—W|]
Ise
) V[i.w]=V[i——1,w]
else

V[i, W] =V[i—1,w]/lwi>w
Running time = 0 (N * W)
Q 17. Solve following knapsack 01 problem
n = 4 (number of elements)
W = 5 (max weight)

Elements(weight, benefit) : (2, 3), (3, 4), (4, 5), (5, 6)

Ans.
SR w 0 1 2 3 5
ololojo}jo 0
1
2
3
4
forw=0to W
Vow]=0
Step ® w0 1 2 3 4 5
ojlofojojojo
110
2|0
3|10
410
fori=1ton
V(i,01=0
Ww 0 1 2 3 4 5
E 0|0 ofJofolo]o
? 1| o |vo ';):_13
‘ s[c g2
310 St
4|10 Wi = —1

(PTU, Dec. 2019, 2014)

A el

Fundamental Algorithmic Strategies

i/W°12345
oo olojolo
1ol oTs
2|10
3|10
4| 0
iNV°12345
ofo]Jojofojo]o
110 0 3 [
2|0
310
410
w0 1 2 3 4 5
oloclololololo
1] 0 o
210
3|10
410
MW 0 1 2 3 4 5
ololololololo
110 -
2.0
3|10
410
iw 0 1 2 3 4
olololololo
10[0
2| o [¥o
3|0
410
iw 0 1 2 3 4 5
ololololololo
1003[3
5 2[o o "
‘ o
410

| =1
bl=3
wim 2
w=2
w=wi =0

fi E3=A
LTI
w

e T ————

I

LT
010 irj(’ 9 “, Z ‘
oJolalz2l274"
o2 tsl { ai
0 11
: 1
Ly
0 1 2 2 4 &
ololololsl o1
olodalsl=(2
ool 3] ats
0
0
0 1 2 3 4 s
ololofoloTlo
NRRECTRERE
0|0 |3 (4] a4y
0
0
0 1 2. 3 4 s
oloflololoTo
olo]l3lalals
0 0, 3f4]a]7
o] oY 3¥ &
0
0 1 2 3 4 5
olololo N =
olol3lalals
ojof3]lalalr
olo!l 3l ats
0
0 1 2 3 4 5
ololololol|o
ofolslzl3ls
0]o0 314 al7
01013145 -,V
0

o

S

e RQ

I
(TR

E 3 &4
= a0

LO3DD Design & Analysis of Algorithms Fundamental Algorithmic Strategles

- 33
’32’—///— Q 18. What Is greedy method? (PTU, Dec. 2016 ; May 2019, 2013)

Ans. Greedy method : Greedy method is the most important design technique, which
makes a choice that looks best at that moment. A given 'n’ inputs are required us to obtain a
subset that satisfies some constraints that is the feasible solution. A greedy method suggests

that one can device an algorithm that works in stages considering one input at a time.
E Q 19. Differentiate between dynamic programming and Greedy algorithms.
T} (PTU, Dec. 2015)
nn Ans.
g 123 r‘—«-i- Dynamic Programming Greedy Algorithms
; n: ofofo]® .ﬂ-—o—- . 1. At each step, the choice is determined | 1. At each step, we quickly make a choice
sfojol3l3 ._B—s-L |bn-=6 based on solutions of subproblems. that currently looks best. It is a local
2folol3]e]ed] g c optimal (greedy) choice.
ifojof3]e]S 7' w-w =0 2. Sub-problems are solved first. 2. Greedy choice can be made first before
Jofofa]els]T] solving further sub-problems.
. 3. Bottom-up approach. 3. Top-down approach.
Now we find the item) : 4. Can be slower, more complex. 4. Usually faster, simpler.
So. iod, k=5, bi=6, wi=5, VIiKI=7, V-1, KI=7
’ Q 20. What are the steps for a developing a greedy algorithm?
Then . o 5 4 E ' (PTU, May 2019 ; Dec. 2016)
g 4 2 A & 8 "‘8" =T Tale[dl0 Ans. Steps for a developing a greedy algorithm are :
cfololofo]o]O T35 53] ins 1. Feasible : Here we check whether it satisfies are possible constraints, not to obtain
cjolal3|3]3 'k - 45 LI k=5 atleast one solution to our problems.
sialolalela] 7 eee —> Zj0lO|3]&[S Y7 e 2. Local optimal choice : In this, the choice should be optimum which is selected from
slolof3]e|sl/7 3;15:7 3jojolaj4]5 N Viikl=7 the currently available.
Jololalz]s [\ vimik=7 salo|o|3]|4|5]|7|Vi-1K=7 3. Unalterable : Once the decision is made at any subsequence step that option is not
' altered.
w o 1 2 3 & 5 W 0 1 2 3 4 5 Q 21. Define feasible ‘and optimal solution. (PTU, Dec. 2014)
N cloloflolo|o]i=2 oflolol/o olo]oli=1 Ans. -Feasible solution : Given n inputs and we are required to form a subset such
slolo] 3433 |/3) x5 VIRNBRYEHBE :;;1'3, that it satisfies some given constraints then su~h a subset is called feasible solution.
e 5 5 T 15 o ‘; — @lolo|3|4a]l7|wi=2 Optimal solution : A feasible solution either maximizes or minimizes the given objective
©01°1 " - 3'[. k=7 V[ik] =3 function is called as optimal solution.
3jofof314150|7)vram=3 310101314157 lyimam=o0 : .
cfololzl2]5]7|kwm=2 slololalals]| 7 |kwi=0 Q 22. Write the control abstraction for greedy method.
Ans. Algorithm Greedy(a, n)
{
W 8 1 2 3 4.5 Mw 0 1 2 3 4 5 solution = 0 ;
slofolo]o]o]o]iz0 ofolof@]olo]o fori=1 to n.eo
Oiosloisjaja]alk=0 Dlojo|\sf3|3]|f3 { ;
@lefo{z[<[e]|7 @|ofo|3]aT2Ha x = select(a) ;
SLILIEE R ER 3lolo|3)4a]ls5 |7 if feasible(solution, x) then
s1ofp]zfs|s]7 4lo0|o0|3|4]5>s \7} solution = Union(solution, x) ;
}
MNow the optimal knapsack The optimal knapsack should : return solution |

snouid contain {1,2} contain {1,2})

34

Q 23. What is the greedy choice prop
Ans. A globally optimal
choice made by greedy algoritl

any future choi
Q 24. Give the gen

ces or on solution

eral character

LO3IDD Design & Analysis of Algérithms

erty?
solution can arrive at by making a locally optimal choice. The

hm depend

s on choices made so far but it can not depend on
to the sub problem. It progresses in top down fashion.
istics of greedy algorithm.

(PTU, Dec. 2009)

\ z : t the solution from giv
X lem in an optimal way construc given set of
g Ans. To s:'vz,aof,-:::‘e;oceedsv two other sets get accumulated among this one set
g candigates. A; ,:d‘iadatgs that have been already considere.d and chosen while the other set
/ contains t:e ; ndidates that have been considered but rejfacted.
contains t eL ¢S={ab,ec,d e f, g} denote a set of objects with weights and benefits
a zfn ;,e table’ pelow. What is an optimal solution to the fractional knapsack
::,gl:r:nfor S assuming that we have a sack that can hold objects with total weight
187 E ‘
tem [A | B c D E F G
benefits [12 | 10 8 1 14 7 2
[weignt (Kg) [4 [6 5 7 3 1 6
Carrying capacity W = 18 Kg."
Ans. First we must calculate the “value” for the each items, which is defined as value =
benefits/weights. ;
So, :
[item [A | B | cC D £ F G
| benefits | 12 | 10 1] 14 [7 | 9
| weight | 4 | 6 7 | 3 1 6
[value | 3 [167] 1.6]| 157 467 | 7 [15
Now sort this table according to the decreasing value
| item F E A B C D G
benefits 7 14 12 10 8 11 9
Weight 1 3 4 6 5 7 6 W=18
Value 7 4.67 3 167 | 16 [1.57 1.5
Initially
Knapsack L J W=18
Weight =0
benefit=0
ltem F E A B C D G
benefits 7 14 12 10 8 T 9 W=18
Weight 1 3 4 | 6 5 7 6
Value 7 1467 | 3 | 167 | 1.6 | 1.57] 15

A
Fundamental Algorithmic Strategies |

‘ : 35
Now select maximum valued item ‘F’, Here (Weight + wiF)) <W

Put whole item ‘F’ into knapsack. Add weight]

F] with weigh it 1F) wi .
So, Knapsack L E " We‘? ‘a"‘wd :i’:f“ kA
Weight = 1
benefits = 7
Item F E]A[B\C\D\(ﬁ
benefits 7 11a112] 0] 8 | [9|
Weight 1 3 41 8] 5 [71 6| w=1s
Value 7 |4a67] 3 | 1.67] 1.6 | 1.57 | 18

Now select next maximum valued item ‘E’, Here (Weigl

ht + wlE]) < W
Put whole item

‘E’ into knapsack. Add weight{E] with weight and benefit(E] with benefit.
So, Knapsack L FE

] W=18
Weight =1+3=4 :
benefits = 7 + 14 = 21
item F E A Bl c ol el
benefits 7 114 12] 10] 8 [11| 9| w-1e
Weight 1 3 14l 6] 5 [71 5s6}|
Value 7 |467] 3 | 1.67| 16 [157| 15

Now select next maximum value item ‘A’, Here (weight + w[A])<= W

Put whole item ‘A’ into knapsack. Add weight{A] with weight and benefit{A] with benefit.
So, Knapsack |_ FEA] W=18

Weight=1+3+4=8
benefits =7 + 14 + 12 =33

Item F ElAal B] c|bpl al
benefits 7 {14 12] 10 8 [11| 9
Weight 1 1 31 41 86|l s 7] 6] w=18
Value 7 |467| 3 | 167| 16 [157] 15

Now select next maximum valued item ‘B’, here (weight + w[B]) <= W.
Put whole item ‘B’ into knapsack. Add weight{B] with weight and benefit{B] with bene

So, Knapsack L FEAB 1 W=18
Weight=1+3+4+6=14
benefits =7 + 14 + 12 + 10 = 43
ltem ¥ |l el alsleinl el
benefits 7 14 12 10 8 11 9
Weight 1 3 4 6 5 7 6 W=18
Value 7 4.67 3 167| 16 | 157} 15

36

Now select next maximum valued item
‘B’ into knapsack. And calculate weig

needed weight= W - Wei

Put whole item ‘B’ into knapsack

LO3IDD Design & Analysis of Algorithms

', Here (Weight + w[C]) «=W. Put whole item
ht and benefit as follows :

ight=18"14=4

1 w=18

FEAB.C
Knapsack L
Weight =W =18

benefits =7 + 14 + 12 + 16 + (needed weight)”

value [C] = 43+ (4 *1.6) = 43 +64=494
tem F E A B C D G
benefits 7 14 12 10 8 11 9
Weight 1 3 4 6 5 7 6
Value 7 -|4.67 3 167 | 16 | 1.57 | 1.5 _
Remaining items D,G could not put into knapsack (bag) because bag is full i.e.
weight = W
Knapsack = FEAB.C |

Weight in Bag = W= 18
Benefits = Rs 49.4

Q 26. Write the algorithm for fractional knapsack problem.

Ans. Fractional knapsack problem :

Greedy-fractional-knapsack(ltem[n], w{] , b[], W)

{

Knap =0
Weight = 0
Benefit = 0

for each item i

vii] = bii] / wii]
while(weight < = W)
{

i = Extract item of maximum value from list

if(weight + wii] < W)

{

knap = knap U item(i]
~ Wweight = weight + wii]

benefit = benefit + v{i]

)

else

(. 1]
knap = knap U itemyjj

weight = w

W=18

Fundamental Algorithmic Strategies

benefit = (W — weight) * v{i] / w{i]
}
}

return x

}

Q 27. Explain traveling salesman problem.

Ans. In traveling salesman problem a salesman has to travel n cities starting from any
one of the cities and visit the remaining cities exactly once and come back to the city where
he started his journey in such a manner that either the distance is minimum or cost is minimum.
This is known as traveling salesman problem.

Q 28. Write some applications of traveling salesman problem.
Ans. 1. Routing a postal van to pick up mail from boxes located at n different sites.
2. Using a robot arm to tighten the nuts on some piece of machinery on an assembly

37

line.

3. Production environment in which several commodities are manufactured on the same
set of machines.

Q 29. Give the time and space complexity of traveling salesman probiem.
Ans. Time Complexity : O(n2 2n)
Space Complexity : O(n 2n)

Q 30. What is Greedy method? State and write algorithm for Knapsack problem
using Greedy method. (PTU, Dec. 2018, 2011 ; May 2017, 2008)

Ans. Greedy method is a method of choosing a subset of the dataset as the solution
set that results in some profit. Consider a problem having n injputs, we are required to obtain
the solution which is a series of subsets that satisfy some constraints or conditions. Any
subset, which satisfies these constraints, is called a feasible solution. It is required to obtain
the feasible solution that maximizes or minimizes the objective function. This feasible solution
finally obtained is called optimal solution.

If one can devise an algorithm that works in stages, considering one input at a time and
at each stage, a decision is taken on whether the data chosen results with an optimal solution
or not. If the inclusion of a particular data results with an optimal solution, then the data is
added into the partial solution set. On the other hand, if the inciusion of that data results with
infeasible solution then the data is eliminated from the solution set.

Knapsack problem
Input : n objects and a knapsack
Each object | has a weight wi and the knapsack has a capacity m
A fraction of an object xi, 0 < xi < 1 yields a profit of pi.xi
Objective is to obtain a filling that maximizes the profit, under the weight constraint
of m
Formally,

0O 0OO0OOCO

LO3IDD Design & Analysis of Algorithms

.
. n
Maximize 9 ,_qPi-Xi

n 3 i m
subject to Zm Wii-H

and02x,-s1,1si5n
and Eachp; >0 andw; >0
Problems instance : N'= 3, m= ;
Greedy strategy 1: Pick items wi
Solution. (1, 2/15, 0). Profit : 28.2 . o .
Greedy strategy 2 : Pick as many items as possible (smallest weight items first).
Solution. (0, 2/3, 1). Profit : 31 . . .
Greedy strategy 3 : Pick items with maximum profit per unit weight.
Solution. (0, 1, 1/2). Profit : 31.5
items considered in the objective function : total profit, capacity used, and ratio of '
accumulated profit to capacity used

Algorithm

void greedy_knapsack (m, n)

{

// Solution vector is x [i}, 0 <= i< n

for(i=0;i<nli++)

x[i]=0.0; :

U =m //Unused capacity

for (i=0; (i <n) && (w [i] <= U) ; i++)

{

x[i]=1.0;

U=U-wli;

}

if (i <)

x [} =UmwIi;

}

Q 31. Does greed
1o support your answ

Ans. A greedy algorithm always makes a locally optimal cho

20, P = (25, 25, 156) and W = (18, 15, 10).
th maximum profit per item.

0

y algorithm always give an optimal solution? Give arguments

. (PTU, May 2013, 2009)

S Ncion i A ice in the hope that this

SO“‘;; ::“t‘)e?(: 10 2 globally optimal solution. Greedy algorithms do not always yield optimal
Grée:y :‘f some problems they are very efficient.

problems have ng?n"'::::ize typically used to solve optimization problem. Most of these

subset that satisfies ey c‘:,:'\s‘:“? us to obtain a subset that satisfies some constraints. Any

feasible solution that raints is called a feasible solution. We are required to find a

either minimj g
. z ; . ")
common situation we haye - €S or maximizes a given objective function. In the most

V’

— m———

fundamental Algorithmic Strateg)les
e — _

O C: A set (or list) of candidates 7

O S : The set of candidatos thal T /s wsary iass apn

O feasible () : A function thal Ay is £ 5 44 & & dusmse py w0,

O solution () : A funclion that chevs A & 440 4usydiin & o0 2ay

Q select () : A funclion 101 ChOOBIU i AR (1ptidn sy an ik as

Q An objective function that we are trying v Afn/g
Example : Coin change

O We want to give change 10 a customer using the emallest praseia <« oy 5 ...
(of units 1, 5, 10, and 25, resp.). ‘ ‘

Q Greedy algorithm will always find the optimal solution in this czse.

Q If 12-unit coins are added, it will not necessarily find the optimal goi.re-
eg.=15= (12,1, 1), (10, 5) is optimal.

Q

Greedy method might even fail to find a solution despite the fact thzs <re <. <
(Consider coins of 2, 3 and 5 units).

e.g.6 =5+ 7 (3, 3) is optimal

Q 32. Let n = 4 (Py, Py, Py, P,) = (100, 10, 15, 27) and (d;, dy, d3, d,) = (2, 1. Z 7}

‘where Pi and profits on processes or job and di are deadiine of completion. Find ou
the optimal schedule.

(PTU, Dec. 2005}

Ans.
S.No. Feasible Processing Value
Soluton Sequence

1. (1, 2) 2,1 110
2. (1, 3) (1, 8) or (3, 1) 115
3. (1, 4) (4, 1) 127
4 2, 3) (2. 3) 25
5, (3, 4) (4, 3) 42
6. (1) 1 100
7. (2) 2 10
8. (3) 3 15
9. (4) 4 27

Thus, the .optimal solution s solution 3 (i.e. 127) with schedule (4, 1) and profit 127.

Q 33. Consider four items aldng with their respective weights and values

1=«il,i2,13, i4>

W =<7, 3, 4: 5>

\,I . <49, 12, 42: 30>)

The capacity of the knapsack W = 10. Find the solution for the fractional knapsack
problem using greedy method. LPIN), My 2h2)

Ans. This is fractional knapsack problem. The item can be selected fractionally. First of
all we will obtain value to weight ratio and arrange the item in non increasing order.

LO3DD Design & Analysis of Algorithmg
——ms

= Weight Value Value to weight
v = 4 #42 10.5
;s 7 $49 o
1 5 $30 - : 6
; 3 $12 &
F f To fulfill the capacity W = 10 we will have

itern of weight 4. . ;
3 ::;;e"rzm of weight 7 and take its fractional 6/7 weight

. Weights of selected items

L 4+7 X L = 10 which fits into the knapsack
5 7 ’ .
Hence, the profit obtained will be

42 + 49 x -s- =42 + 42 = $84

This is an optimal solution to given instance of knapsack.

Q 34. Differentiate between dynamic programming and divide and conquer
technique. (PTU, Dec. 2005)

Ans. 1. Both solve a problem through combining the solutions of the subproblems.

2. Subproblem independence (YES for Divide and Conquer, NO for Dynamic Programming).

3. Divide and conquer does more work than necessary by solving the common
subproblems, while DP solves each subproblem just once and saves the solution in a table.

Q 35. What is the working principle of quicksort? (PTU, May 2012)

Ans. Quicksort also called partition exchange sort, designed to improve and resolve
the deficiencies of the selection sort. The quicksort is based on three main strategies :

(a) Split (divide) the array into small subarrays.

(b) Sort the subarrays.

(c) Merge (join/concatenate) the sorted subarrays.
Q 36. Differentiate between top down and bottom up approaches.
(PTU, May 2010 ; Dec. 2008)
Ans. A top-down approach (also known as step-wise design) is essentially the breaking
down of a system to gain insight into its compositional sub-systems. In a top-down approach
an overview of the system is formulated, specifying but not detailing any first-level subsystems.
Each subsystem is then refined in yet greater detail, sometimes in many additional subsystem

|evel§.‘ until the entire specification is reduced to base elements. A top-down model is often
specified with the assistance of .

black b _ ‘black boxes', these make it easier to manipulate. However,
ack boxes may fail to elucidate elementary mechanisms or be detailed enough to realistically
validate the model.

A bottom-u i fusad : ;
thus ma P approach is the piecing together of systems to give rise to grander systems,

king t_he original systems’ sub-systems of the emergent system. In a bottom-up

I |

Fundamental Algorithmic Strategies

approach the individual base elements of the system are first specified in ey 44
elements are then linked together to form larger subsystems, which then in tum aré \'hm
sometimes in many levels, until a comp|et.e t_op-level system is formed. Thig b tegy\nkeﬁ,
resembles a ‘seed’ model, whereby the beginnings are small but eventually grow in i :Jhgn
and completeness. prever, ‘organic strategies’ may result in a tangle of e|em“l:sexny
subsystems, developed in isolation and subject to local optimization as opposed to meau:nd
global purpose. 9a

Q 37. What are important characteristics of dynamic programming?

Ans. Important characteristics of dynamic programming : o - S
1. The problem can be divided into stages with a decision required at each stage.
Each stage has a number of states associated with it.

The decision at one stage transforms one state into a state in the next stage.
Given the current state, the optimal decision for each of the remaining states does
not depend on the previous stages or decisions.

There exists a recursive relationship that identifies the optimal decision for stage j
given that stage j + 1 has already been solved.

6. The final stage must be solvable by itself.

2.
3.
4
5.

Q 38. Describe the matrix multiplication algorithm for multiplying A and B matrix
in dynamic programming

7 10
12 3
where A = 8 11
[4 5 0]2x3 and . (PTU, Dec. 2007)
g 3x2
Ans. The multiplication of A and B is defined as
7 10

4 5 6 9 12 4x7+5x8+6x9 4x10+5x11+6x12

AxB =C

2x3'"3x2=2x2

Therefore when we multiply a matrix whose order is 2 x 3 to matrix 3 x 2 then we get
order 2 x 2 of the resultant matrix. :

Algorithm : Matrix multiplication (A, B)
1. if cal [A] = row [B]
2. then error “can't be multiply”
3. else for i « 1 to row [A] (P)
4, do for) « 1 to cal [B] (r)
5.doCli,jl«< 0

[1 2 3}' - _[1x7+2x8+3x9 1X10+2><11+3x12]

LOIDD Design & Analysis of Algorithms

A2

6. for K « 1 to cal [A] [a] .
7.doC[i.j]<—C[i,j]+A[|,
8. return G [i,]]

Therefore, Ak * Byxj = Cixi
Q 39. What are the advantages

K] *BI[K

of dynamic programming over the greedy method?
(PTU, May 2007)

OR
i een greedy and dynamic programming method of problem

? Differentiate betw (PTU, Dec. 2016, 2011 ; May 2011)

SOMG, v, v Proganming

Both techniques are optimization techniques, and both build solutions from a
O b .
. llection of choicés of individual elements. . ‘ -
] ';.:e greedy method computes its solution by making its choices in a serial forward
fashion, never looking back or revising previous choices. N
O D nami.c programming computes its solution bottom up by synthesizing them from
srrlaller subsolutions, and by trying many possibilities and choices before it arrives,
at the optimal set of choices. 3 ‘
O There is no a prior litmus test by which one can tell if the Greedy method will lead to
an optimal solution.) . .
s By contrast, there is a litmus test for Dynamic Programming, called The Principle of
Optimality.
Q 40. Find the shortest path from node 1 to all vertices of the graph given below.
Show all the intermediate steps. The numbers on the edges are the weights.
(PTU, Dec. 2008)

Ans. Given a weighted connected graph (undirected or directed), the all pairs shortest

paths problem asks to find the distances (the lengths of the shortest path) from each vertex
to all other vertices. ’

Q 41. Describe the dynamic programming algorithm for computing the minimum
cost. (PTU, May 2010)
Ans. A Dynamic Programming Algorithm : To begin, let's assume that all we really
vant to know is the minimum cost, or minimum number of arithmetic operations, needed to
nultiply out of the matrices. If we're only multiplying two matrices, there's only one way 0
nultiply them, so the minimum cost is the cost of doing this. In general, we can find the

Fundamental Algorithmic Strategies 43

minimum cost using the following recursive algorithm -

U Take the sequence of matrices and separate it into two subsequences,

U Find the minimum cost of multiplying out each subsequence.

O Add these costs together, and add in the cost of multiplying the two result matrices.

Q Do this for each possible position at which the sequence of matrices can be split,

and take the minimum over all of them.

For example, if we have four matrices ABCD, we compute the cost required to find each
of (A) (BCD), (AB) (CD), and (ABC) (D), making recursive calls to find the minimum cost to
compute ABC, AB, CD, and BCD. We then choose the best one. Better still, this yields not
only the minimum cost, but also demonstrates the best way of doing the multiplication : just
group it the way that yields the lowest total cost, and do the same for each factor.

Unfortunately, if we implement this algorithm we discover that it's just as slow as the
naive way of trying all permutations! What went wrong? The answer is that we're doing a log
of redundant work. For example, above we made a recursive call to find the best cost for
‘computing both ABC and AB. But finding the best cost for computing ABC also requires
finding the best cost for AB. As the recursion grows deeper, more and more of this type of
unnecessary repetition occurs. . ‘

One simple solution is called memorization : each time we compute the minimum cost
needed to multiply out a specific subsequence, we save it. If we are ever asked to compute it

* again, we simply give the saved answer, and do not recomputed it. Since, there are about n2/

2 different subsequences, where n is the number of matrices, the space required to do this is
reasonable. It can be shown that this simple trick brings the runtime down to O (n3) from O
(2m), which is more than efficient enough for real applications. This is top-down dynamic
programming.

Q 42. Solve all pair shortest path problem by using dynamic programming.

(PTU, May 2011)
Ans. When a weighted graph, represented by its weight matrix W the objective is to find
the distance between every pair of nodes.

* We will apply dynamic programming to solve all pairs shortest path.

Step 1. We will decompose the given problem into subproblems. Let A'((Lj) be the length
of shortest path from node i to node f such that the label for every intermediate node will be
< = K. We will compute AKX for K =1 n for n nodes.

Step 2. For solving all pair shortest path, the principle of optimality is used. That means
any subpath of shortest. Path is a shortest path between the end nodes. Divide the path from
i node to j node for every intermediate node, say 'K'. Then there arises two cases.

(i) Path going from i to j via K.

(ii) Path which is not going via K. Select only shortest path from two cases.

Step 3. The shortest path can be computed using bottom up computation method
following is recursion method.

Initially : A® = W [i, j]

LO3IDS Design & Analysis of Algorithms
44 e R SR

Next computations :

Ak, = min {A""- Al * A;(K:)}

o i R mming? Explain all pair shortest
Q 43. What do you mean by dynamic progra (PTU, May 2007)
path problem with examplc-d mputer science, dynamic programming is a method for
Ans. In mathermalcs anb c:ki: them down into simpler subproblems. It is applicable
solving complex prOb‘e“:s ?pe::es ofg overlapping subproblems which are only slightly smaller
;zﬁmn: Z:hibmng - (’:escribed bemv), When applicable, the method takes far less time
o ";}:ek:: :::st;ehind dynamic programming is quite simple. In general, to solve a given
problem, we need to solve different parts of the problem (subproblems), ?hen combine the
solutions of the subproblems to reach an overall solution. Often, many of these subproblems
are really the same. The dynamic programming approach seeks to so'lve each subproblem
only once, thus reducing the number of computations. This is especially useful when the

number of repeating subproblems is exponemially large.

Top-down dynamic programming simply means storing the results of certain calculations,‘
which are later used again since the completed calculation is a sub-problem of a larger
calculation. Bottom-up dynamic programming involves formulating a complex calculation as
a recursive series of simpler calculations.

All-pairs shortest path problem : The all-pairs shortest path problem can be considered
the mother of all routing problems. It aims to compute the shortet path from each vertex v to
every other u. Using standard single-source algorithms, you can expect to get a naive
implemeéntation of O (n » 3) if you use Dijkstra for example — i.e. running a O (n ~ 2) process

n times. Likewise, if you use the Bellman-Ford-Moore algorithm on a dense graph, it'll take
about O (n » 4), but handle negative arc-lengths too.

Storing all the paths explicity can be very memory expensive indeed, as you need one
spanning tree for each vertex. This is often impractical in terms of memory consumption, so
these are usually considered as all-pairs shortest distance problems, which aim to ﬁnd'just
the distance from each to each node to another.

The result of this operation is an n*n matrix, which stores estimated distances to the

each node. This has many problems when the matrix get too big, as the algorithm will scale
very poorly.

Q 44. Compute all pair shortest path for the following graph. (PTU, Dec. 2004)

Fundamental Algorithmic Strategies

a5
1 2 @
110 4 15
A 0=
Ans Al 2le o 2
3|3 «»« 0
(1 2 3"
1 4 15
Al=2|8 0 2
- 3[3@0_
min (e, (3+4))
12 3]
110 4 (B)——>min (15, (4+2))
A2-2|8 0 2
3|3 F o]
1 2 3]
’ 110 4 6
A =2|5) 0 2
3[3 7 o]

A3 gives shortest distances between any pair of vertices.

Q 45. What do you mean by dynamic programming? Explain assignment problem
with example. (PTU, Dec. 2015 ; May 2009)

Ans. Dynamic programming is a method for solving complex problems by breaking
them down into simpler subproblems. It is applicable to problems exhibiting the properties of
overlapping subproblems which are only slightly smaller and optimal substructure (described
below). When applicable, the method takes far less time than naive methods.

The key idea behind dynamic programming is quite simple. In general, to solve a given
problem, we need to solve different parts of the problem (subproblems), then combine the
solutions of the subproblems to reach an overall solutions. Often, many of these subproblems
are really the same. The dynamic programming approach seeks to solve each sub problem
only once, thus reducing the number of computations. This is especially useful when the
number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain calculations
which are later again since the completed calculation is a sub-problem of a larger calculation,.

Bottom-up dynamic programming involves formulating a complex calculation as a recursive
Series of simpler calculations.

LO3DD Design & Analysis of Algorithms
46

n be stated as a problem where
. assignment problem ca

Assignment Problem ed Th‘: diﬂe?""' machines on the basl's of the cost of doing these
e as::g:nﬂze the total cost of doing all the jobs on different machines.
jobs. The objective is to nt problem is only one job can be assigned to one machine
The peculiarity of the assignmeawgnm nt. The cost data is given as a matrix where rows
i.e., it should be a one-;'wum"’ to machines and there are as many rows as the number of
correspond t::abu !ﬂd' of jobs and number of machines should be equal.

columns i.e. numbe

Example rsons A, B, C, and D are to be assigned four jobs |, Il, Il and IV. The
: Four pe . G, .
is given as under, find the proper assignment.
oot mmnmﬂm A B C D
] 8 10 17 9
il 3 8 5 6
i 10 12 11 9
v 6 13 9 7 | |
Solution : in order to find the proper assignment we apply the Hungarian algorithm as
follows -

i (A) Row reduction

Man/jobs A B C D
| (] 2] 1

1] 0 5 2 3

I 1 3 2 0

v 0 7 3 1

! (B) Colun seduction

Marvjobs A B C D
! 0 4] 7 1

[} (1] 3 0. 3

i 1 1 0 0

v 0 5 1 1

W (A) and (8) zeso assignment
Manfots

A e c D
f 4 5] 7 1
B X 3 @] 3

, i 1 1 p | 0]
v 5 1 1

K

Fundamental Algorithmic Strategies

47
In this way all the zero's are either crossed out or assignem
4 (i.e. number of rows or columns). Thus, the assignment is opti
= 'Fromthetablewegetl—rs l=>C:ll>DandIv - A,
Q 46. What do you mean by dynamic programmin.
sultable examples.

mal,

ning? Explain with the help of
(PTU, May 2019, 2015, 2013 ; Dec. 2011, 2010)
OR

What is dynamic programming? How is this approach different from r ”
Explain. (PTU, Dec. 2018, 2013 ; May 2012)

Ans. Dynamic programming is a method for solving complex problems by breaking
them down into simpler subproblems. It is applicable to problems exhibiting the properties of
overlapping subproblems which are only slightly smaller and optimal substructure (described
below).'When applicable, the method takes far less time than naive methods.

The key idea behind dynamic programming is quite simple. In general, 10 solve a given
problem, we need to solve different parts of the problem (subproblems), then combine fhe
solutions of the subproblems to reach an overall sol

utions. Often, many of these subprobiemns

are really the same. The dynamic programming approach seeks 1o solve each sub probiem

only once, thus reducing the number of Computations. This is especially useful when the
number of repeating subproblems is exponentially large.

Top-down dynamic programming simply means storing the results of certain Caiculafions

which are later again since the completed calculation is a sub-problem of a larger caicudation

Bottom-up dynamic programming involves formulating a complex calculation as a recursive
series of simpler calculations.

Difference Between DP and Recursion :
intermediate results where as recursion does not.

when a recursion function is called repeatedly with the same arguments. in fact dynamic
Programming is nothing more than recursion wi

immeaddtionofamdingstrahgy.l:ahe
sequence comparison algorithm the caching str.

ategy was to use a 2D array. In other situations
8parse arrays and hashing are more appropriate.

Q 47. What is swapping? Explain.

Ans. To replace pages or segments of data in memory. Swapping is
that enables a computer to execute programs and manipuiate data files larger than main
memory. The operating system copies as much data as possible into main memoary and
leaves the rest on the disk. When the operating system needs data from the disk, it exchanges
a portion of data (called a page or segment) in main memory with a portion of data on the
disk. DOS does not perform swapping, but most other operating system, including 0S/2,
Windows, and UNIX, do. Swapping is often called paging. In UNIX systems, swapping refers
10 moving entire processes in and out of main memory.

Q 48. What is recursion? What are its drawbacks? (PTU, May 2007)

Ans. Recursion : Divide-and-conquer algorithms are naturaily implemented as recursive

Procedures. In that case, the partial sub-problems leading to the one currently being solved
are automatically stored in the procedure call stack.

Theessent‘aniﬂerenceisheDPkeqni
Thismakesahugediﬂeremebpelhnm

3 it "

LoD Design & Analysis of Algorithms
. = (PTU, May 2015)
. State greedy strategy- ' e nchn
(:n?. (] Theggreedy strategy rithm desig
Like divide & Conquer

€ algorithms are used to'
.lrJheT?wree;do)a!i i;g?o find the best solution.
O Works when the problem has the g
A global optimum can be raacr}ed by ma o
We can also say that Greedy is a strategy a

with the following cm::c::p":w . A global optimum can be arrived at by selecting a local
1. Greedy-cho ’

opt'm;mdpumd substructure : An optical solution t

to subprobjems.
Q 50. Discuss the use of D and C in quicksort algorithm. (PTU, May 2911)
Ans buicksorl is a divide and conquer sorting algorithm in which division is dynamically
carried out {as opposed to static division in merge sort).
The three steps of quicksort are as follow : _
Divide : Rearrange the elements and split the array into two sub-arrays and an element

in between such that each element in the left subarray is less tharf or equal the middle
element and each element in the right subarray is greater than the middle element.

Conquer : Recursively sort the two subarrays.

Combine : None.

Algorithm

Quicksort (A, n)

1 : Quicksort (A, 1, n)

Quicksort' (A, P, 1)

1: if P 2 r then return

2 : q = partition (A, P, r)

3: Quicksort (A, P,q-1)

4 : Quicksort (A, q + 1,71).

Q 51. Write algorithm for travelling sales person problems using dynamic
programming. (PTU, Dec. 2006)

Ans. Algorithm for travelling sales person problem :

Problem Description : Let G be directed graph denoted by (V, E) and where V denotes
set of vertices and E denotes set of edges. The edges are given along with their cost C;. The
cost Cy > 0 for all i and j. If there is no edge between i and j then C; = .

A tour for the graph should be such that all the vertices should be visited only once and
cost of the tour is sum of cost of edges on the tour. The traveling sales person problem is to

find the tour of minimum cost.

Dynamic programming is used to solve this problem.

is an algo

solve optimization problems.

reedy choice property .
king locally optimun choices.
s well on optimization problems

o the problem contains an optimal §olution

fundamental Algorithmic Strategies

49
Step 1. Let the function C (1, V — (1)) is the total length of the tour terminas; 1

The objective of TSP problem is that the cost of this tour shouid be minimum
Let d [i, j] be the shortest path between two vertices i and |.

Step 2. LetV,, V,. ..V, be the sequence of vertices followed in optimal tour. Then (v,
Vai isus V) must be a shortest path from V; to V,, which passes through each
vertex exactly once.

Here the principle of optimality is used. The path V,, V., V, must be optimal
for all paths beginning at V (i), ending at V (j), and passing through all the
intermediate vertices (V;,; V,_;} once.

Step 3. Following formula can be used to obtain the optimum cost tour.

Cost (i,) =min {d [i, j] + cost (j, s — {j}) } whereje Sandi= S
Q 52. Write algorithm for quick sort using divide and conquer. What is divide and

.}

conquer algorithm? Use this algorithm to find the maximum and minimum from a given
array. (PTU, Dec. 2018 ; May 2007)

Ans. Divide-and-conquer is a top-down technique for designing algorithms that consists of

dividing the problem into smaller subproblems hoping that the solutions of the subprcblems are
easier to find and then composing the partial solutions into the solution of the original problem.

Little more formally, divide-and-conquer paradigm consists of following major phases:

Q Breaking the problem into several sub-problems that are similar to the original
problem but smaller in size,

Q Solve the sub-problem recursively (successively and independently), and then

O Combine these solutions to subproblems to create a solution to the original problem.

Binary Search (Simplest application of divide-and-conquer)

Binary search is an extremely well-known instance of divide-and-conquer paradigm.

Given an ordered array of n elements, the basic idea of binary search is that for a given
element we “probe” the middle element of the array. We continue in either the lower or upper
segment of the array, depending on the outcome of the probe until we reached the required
(given) element. =

Quick sort is a divide and conquer algorithm. Quick sort first divides a large list into two

smaller sub-lists : the low elements and the high elements. Quick sort can then recursively
sort the sub-lists.

The steps are :
1. Pick an element, called a pivot, from the list.
2. Reorder the list so that all element with values less than the pivot come before the

pivot, while all elements with values greater than the pivot come after it (equal values can go
either away). After this partitioning, the pivot is in its final position. This is called the partition
operation.

3. Recursively sort the sub-list of lesser elements and the sub-list of greater elements.
The base case of the recursion are lists of size zero or one, which never need to be

sorted.

30> Design & Analysis of Algorithms Fundamental Algorithmic Strategies)
- _ ing rithm i «low; i
O <o 8 8 der for fot s0bmmr o e 3 ————————___#1.
Q 53. Explain the role of random : (;TU, May 2019, 2017 ; Dec. 2016, 2013) g st of

T m , i L /] S index for rig'“ sublist of array A
mwnant role in the desigll of both Sequentlal ’ {

if(Alil<=A (i) then

Ans. A randomized algorithm is an algo _
part of its logic. Randomization has played an i

and paralle! algorithm. wbacks of Greedy Algorithm ? (PTU, Dec. 2014) /lif smaller element is present in left sublist

B dmach does not always work because greedy algorithms only {

Ans. The greedy ?g)smThiS will often lead to a local maximum in the solution space /lcopy that smaller elem et to temp array
make_: locally W“’:“‘omn l-n certain cases, you can give an upper bound for the worst temp [k] «AJ[i) :
s"::ﬁ's:(:ht:‘;rz:(siy;lgoﬁmr.n will return (e.g. O(k log n) for set cover), but in other cases, no , i —i+1
bound may be found. In many of thesg lnstancgs. dynamic programming will be a more ket
robust approach that can retumn the optimal solutlo.n. .)

Q 55. What are the applications of dynamic programming ? (PTU, Dec. 2014)

2 else //smaller element is present in right sublist
‘Ans. O Bioinformatics ‘ :

QO Control theory
O Information theory
O Operations research

/lcopy that smaller element to temp array
templk] «A[j)

Q Computer Science : Theory, graphics, Al, systems,] <141

Q 56. Define Brute force approach ? (PTU, Dec. 2014) - kek+t

‘Ans. Brute force is a straight forward approach to solving a problem, usually directly : }
rased on'the problem statement and definitions of the concepts involved. The “force” implied }
y the strategy’s definition is that of a computer and not that of one's intellect, “just do it!” _ //cc?py remaining elements of left sublist to temp
ould be another way to describe the prescription of the brute-force approach. And often, the while (i<=mid) do
rute force strategy is indeed the one that is easiest to apply. A {

Q 57. Write a pseudo code for divide & conquer algorithm for merging two sorted .temP[k] Al
rrays in to a single sorted one. Explain with example. (PTU, Dec. 2014) I ¢=i+1

Ans. Algorithm MergeSort(int A[0....n—1],low,high) K <—k+1

//Problem Description : This algorithm-is for sorting the elements using mergesort i

/Minput : Array A of unsorted elements, low as beginning pointer of array A and high as /lcopy remaining elements of right sublist to temp
d pointer of array A : while(j < = high)do

/lOutput : Sorted array A[0....n—1] : { '

iflow < high) then - temp[k] «A[j]

{ j «j+1

mid <« (low + high)/2 //split the list at mid

k
. MergeSort(A, low, mid) //first sublist } e .
B MergeSort(A,mid+1,high)//second sublist : ;
Combine(A low,mid high)//merging of two sublists (A?:-:SIdAel(]";tat a:) l§otr)ne Instance we have got two sgblist 20.90.40.70 and 10,50,60, then
} y eft sublis Array A (right sublist).

Algorithm Combine (A[0....n-1], low, mid. hi '
{ thm Combine (A[0....n~1], low, mid, high) . : mmm mm

k «low; //k as index for array temp i |

52 //

Then k will be incremented

X = 1, Itis advanced lateron
=mp
M“"‘

tnitially k=0,

R EEE Eldl 2

EEaE

ferp
[wlzlzl«[]%]7]

4

e
'
_

LOIDD Design & Analysis of Algorithms

[e[2]e0] 4
)

Fundamental Algorithmic Strategies

53
Q 58. Differentiate between optimization problem and decision problem

(PTU, May 2015)

Ans. Optimization problem : The problem of finding the best solution from all feasible

solutions is an optimization problem.

QO Optimization problem involves the identification of an optimal solution i.e. either
maximum or minimum.

Q Similarly, an algorithm which is used to solve an optimization problem is called
optimization algorithm.

QO Optimization problems have corresponding decision problems meaning that many

optimization problems can be recast into decision problems that ask whether there
is a feasible solution.

O However, a decision problem can be solved in polynomial time if the optimization
problem can.

Q Typically optimization problems can be solved using branch and bound.

Decision problems :

O Any problem for which the answer is either yes or no depending on the values of
some input parameters is called a decision problem.

Q These input parameters can be natural numbers as well as strings of a formal

language. Instead of yes/no sometimes is also uses /O, success/failure, or true/
false as output.

O Outputs of decision problems are Boolean.

O An algorithm for solving a decision problem is termed as decision algorithm or
procedure for that problem and the problem is then called decidable or effectively
solvable.

0 Typically decision problems can be solved using backtracking.

Q 59. Explain how you can use greedy technique for Huffman coding.
(PTU, Dec. 2014)
Ans. According to Huffman algorithm, a bottom up tree is built starting from the leaves.
Initially, there are n singleton trees in the forest, as each tree is a leaf. The greedy strategy
first finds two trees having minimum frequency of occurrences. Then these two trees are

merged in a single tree where the frequency of this tree is the total sum of two merged trees.-

The whole process is repeated, until there is only one tree in the forest.

Let us consider a set of characters S = <a,b,c,d,e,f> with the frequency of occurrences
P = <45,13,12,16,5,9>. Initially, these six characters with their frequencies are considered six
singleton trees in the forest. The stepwise merging of these trees to a single tree is shown in
figure below. The merging is done by selecting two trees with minimum frequencies, till there
is only tree in the forest.

[c12] [ov6] [es] [f9]

Fundamental Algorithmic Strategies

LOIDD Design & Analysis of Algorithms)

The binary code word for a character is interpreted as path from the root to that character

!
i

54
(14) Hence, the codes for the characters are as follows :
: a=0

-m - [e:5] [f:9] b =101

Step 1. (=] 2] c =100

. @ (14) d=111
. e= 1100
[1:9] f=1101

Step 2. Therefore, it is seen that no code is the prefix of other code. Suppose we have a code
01111001101, to decode the binary code word for a character. We traverse the tree. The first
m character is 0, and the character at which the tree traversal terminates is a. Then, the next bit
is 1 for which the tree is traversed right. Since, it has not reached at the leaf node, the tree is
next traversed right for the next bit 1. Similarly, the tree is traversed for all the bits of the code
string. When the tree traversal terminates at a leaf node, it again starts from the root for the
next bit of the code string. The character string after decoding is ‘adcf’.
Q 60. What is dynamic programming technique ? How does it differ from divide
and conquer technique ? (PTU, Dec. 2015)

Ans. Dynamic Programming : Refer to Q.No. 46

Step 3. Esj {ezt2] LIEE]

Step 4. Dynamic Programming Divide and conquer
In -dynamic programming many . The problem is divided into smali
decision sequences are generated and subproblems. These subproblems are
all the overlapping subinstances are solved independently. Finally ail the
considered. solutions of subproblems are collected
Step 5. together to get the solution to the given

Stepwise merging of the singleton trees

Now, the left branch is assigned a code ‘0’, and right branch is assigned a code 1".
hen,

In dynamic computing duplications in
solutions is avoided totally.

Dynamic programming is efficient than
divide and conquer strategy.

Dynamic programming uses bottom up
approach of problem solving (Iterative
method)

Dynamic programming splits its input at
every possible split points rather than
at a particular point. After trying all split
points it determines which split point is
optimal.

problem.

In this method duplications in
subsolutions are neglected, i.e.
duplicate subsolutions may be
obtained.

Divide and conquer is less efficient
because of rework-on solutions.

The divide and conquer uses top down
approach of problem solving (recursive
methods).

Divide and conquer splits its input at
specific deterministic points usually in
the middle.

56 LO3DD Design & Analysis of Algorithms

Q 61. What are the advantages of brute force tgchnique ?

Ans. The various advantages of brute force technique are'

1. Brute force applicable to a very wide variety of problems. Itis used for many elementary
but important algorithmic tasks. . ‘

2p For some important problems this approach yields reasonable algorithms of at least
some practical value with no limitation on instance size. .

3. The expense to design a more efficient algorithm may be unjustifiable if only a few
instances of problems need tobe solved and a brute force algorithm can solve those instances
with acceptable speed. ' o
4. Even if inefficient in general it can still be used for solving small size instances of a
problem. '

5. It can serve as a yardstick with which to judge more efficient alternatives for solving
a problem.

(PTU, Dec. 2015)

Q 62. Distinguish between decision, counting and optimization problems and
give examples. (PTU, Dec. 2015)
Ans. Decision Problems : In this class of problems, the output is either ‘yes’ or ‘no’.

For example, whether a given number is prime is a decision problem.

Counting problems : The output of this class of algorithms is a natural number. For
example, given a number how many distinct factorization of the number are there.

Optimization problems : This class of algorithms optimizes some objective function
based on the problem instance. For example, given a weighted connected graph, finding a
minimal spanning tree is an optimization problem.

Q 63. Describe divide and conquer strategy for multiplying two n-bit numbers.
Derive its time complexity. (PTU, Dec. 2015)

Ans. Multiplying two n-bit numbers :

xy = (2V2 x +xg) (22 y| + Yg)

=27y, + 22 (x.yg + XRYL) + XRYR
So# n/2 - bit products : 4

bit shifts (by n or n/2 bits) : 2

additions (at most 2n bits long) : 3

we can compute the n/2 - bit products recursively.
Let T(n) be the overall running time for n-bit inputs. Then

L&fb_ﬂs\ n/2 bits

i e—— ——

n bits

0(1) ifn=1

T (n)= 147(2),,0@1) otherwise

= 0(n?)

Q 84, What do you mean by binary search? Explain with an appropriate example

W procedure. (PTU, May 2014 ; Dec. 2004)
Ans, Binary search : Binary search is a technique for searching an ordered list in

we first check the middle item and based on that comparison “discard” half the data.

Fundamental Algorithmic Strategies

i - 57
The same procedure is then applied to the remaining half until a match i

is f
no more items left. ; ound or there are

In binary search the array list is divided into two equal parts (approximately). 1f th
elements of array list are in ascending order then if desired element is less than the.midd\z
element of array list, it will never be present in the second half of the array. Similarly

; i b if the
desired element is greater than the middle element of array, it will never be present in the first
half of the array list.

Thus we can focus our attention on one half of the array list. The process is repeated

and in the next stage we have to search for the element only is one quarter of the array list
This process reduce the search length and search time.

Example of Binary Search : .

‘4 8 | 19| 25| 34 | 39| 45| 48 | 66| 75 | 89 gq

6oc 1 2 3 4 5 6 7 8 9 10 1N
Suppose we want to search 66, then in first pass :

Middle
66 is greater than the middle element, then process is repeated in second half

6+11) 17
2

Middle = =5

=8

Middle

Now the position is found that is 8.
Q 65. Write down the algorithm of binary search.
Ans. Algorithm of Binary Search :
Step 1. [Initialize]

Low=0

High=n-1

(PTU, May 2014 ; Dec. 2004)

[Here, Low = represent the lower limit
High = represent the upper limit]
Step 2. [Perform search] .
Repeat thru step 4 while Low < = High

.i_
|

LOIDD Design & Analysis of Algorithms
58

Step 3. [Obtain index of midpoipt of interval]
Middle= INT((Low + High)/2)
Step 4. [Compare]
i ist [Middle
if Element < List [] (Elemem = given element, List = array]
then High = Middle — 1
else
if Element > List [Middle]
then
low = Middle + 1
else
write (‘Successful Search’)
pos = Middle

[when pos is the position of given element]
Step 5. [Unsuccessful search]
Write (‘Unsuccessful search’)
pos = null .
Step 6. Exit.

Q 66. Write the worst and average case complexity of the binary search.
Ans. Worst case : The worst case complexity of binary search is O(log n).
Average case : The average case complexity of binary search is O(log n).

Q 67. What do you mean by ‘Sorting’ problem?

Ans. Sorting problem : The sorting problem asks us to rearrange the items of a given
list in ascending order (or descending order).

Q 68. What do you mean by ‘Searching’ problem?

Ans. Searching problem : The searching problem deals with fihding a given value,
called a search key, in a given set.

Q 69. Explain bubble sort with example.

Ans. Bubble Sort : A bubble sort compares two values next to each other and exchange
hem if necessary to put them in the right order.

It keeps passing through the array [a, an—1] exchanging each pair of adjacent
lements (a;_;, a) which are out of order (a4 > a).
Why does'it works?

Q During the first pass the largest element is exchanged with each of the elements to

its right and gets into position ay_;.

After the second pass the second largest gets into position ay
After step K, the sub-array [ay_y,
interval [0, N — k — 1].

When no more exchanges are required; the array is sorted.

Q

Q D) seeee

...... » @y-_1] is ordered, we need to continue on the

Fundamental Algorithmic Strategies

59

Sorting Activities for Bubble :
QO Go through multiple passes over the array.

Q In every pass :

(a) Compare adjacent elements in the list.
(b) Exchange the elements if they are out of order.
(c) Each pass moves the largest (or smallest) elements to the end of the array.
O Repeating this process in several passes eventually sorts the array into ascending

order.

Example of Bubble Sort : 53198247

3

-t ek —d = =N

8

L N = (=" P S S L | WWwWwwwwoum

O I e e

8
8
8
9
2
2
2
2
2
2
8
4
4
4
4
4
5
5
5
5
5
5

-—

O I N N e s OO NN NN o®|om®Oo©®©O O

1

ol LOLOOWW L W wwww -~

wlww|louww|lwwndnn NN O oo oaOa (5, T4 IS IS 6 I

2 4 7

2 4 7

2 4 7 Pass 1

2 4 7

2 4 7

9 4 7

4 9 7

4 7 9

47

4 7 Pass 2

4 7

4 7

8~7

7 8

7

T Pass 3

b 4

7

7
Pass 4
Pass 5
Pass 6
Pass 7

1

2

Bubble sort complexity is O(n?) and only suitable to sort array with small size of data.

Fundamental Algorithmic Strategies 61
2. Sort the two sections separately.
average, best and worst case.

Q 70. Explain Bubble sort time oompldlﬂ'\:, ':um:‘: comparisons : The average 3. Merge the two-sorted sections into a single sorted collection.

Ans. Bubble sort average m&: | the number of comparisons needed by the algorithm, Example :

of risons is N(N - 1)/2- I tel t at positi
mrrbeﬁr] m"m step, we need N-1 comparisons to put the largest element at position [. I = [= L‘ I : 1‘3 ‘ : 1 = \

LO3IDS Design & Analysis of Algorithms

N’L'e step we only need N-2 comparisons. We avoid comparing elements Drvide | I [Jl l l [" 1 ‘
o Art second 8 2 9 4 5 3 1 3
with the last om Divide %
v 8 | 2 9 | 4
«1=N(N-1)2. , —_—

~1)+(N=-2)+....

i : (N
g o in best case : We count the number of comparisons

Bubble sort time complexity

2
needed by the algorithm.
Best Case : Bubble sort on an already sorted array : ' o (2 -
O It does like for the average case N(N — 1)/2 comparisons. Koo '
U During the iterations on the array : 0 exchange. b nnn

Bubble Sort Time Complexity in Worst Case : We count the number of comparisons

needed by the algorithm. merge
Worst Case : Array already sorted in reverse order : . [1 [2 [3 l 4 l 5 I 8 [8 1 9 l
U It does like for the average case N(N -~ 1)/2 comparisons. '
U It does a exchange each time it does a comparison N(N — 1)/2 exchanges. Complexity of mergesort is O(n* log (n))
Q 71. Write down the algorithm of Bubble Sort for fixed number of passes. |
Ans. BubbleSort(x, n) P | 2 73.AElpr|||t|: th.e analysis for the mergesort.
Where x = Representa the list of elements i M::éesog:(:nt ["]'; int left, int right)

n = Represents the number of alements In the list
Step 1. [Initialize)

{
if(right > left)

I=0
Step 2. Repeat through step 7 while (I < n-1). {
Step 3. j=0 middle = left + (right — left)/ 2;
mergasort (a, left, middle) .

Step 4. Repeat through step 6 while () < n=i=1).

Step 5. If(x[)] > x[J + 1) mergesort (a, middle + 1, right) ;

merge (a, left, middle, right) ;

temp = x[j)
X[=x [+ 1] f }
[xj+ 1] =temp ! }
Step 6. j+ ; Assumption : N is a power of two.
Step 7, |+ ; For N = 1 : time is a constant (denoted by 1)
Step 8. Exit. ' Otherwise : time to mergesort N elements = time to mergesort N/2 elements plus time
Q 72. Explain mergesort with the help of example]' to merge two arrays each N/2 elements.
A .' . v .
o "mlmnl\:lalrge Sort is an O(n log n) comparison based sortin g algorithm, Merge sort Is Time to merge ltwo arrays each N/2 elements is linear, l.e. N
oo 1 1 In:)oe “\:e see of a divide-and-conquer algorithm. To sort an array, merge sort first Thide e s
Basio Pian .0 halves, sorts these recursively and then merges together the result. ; I ((,L; f ;T (N/2) + N
Next we will solve this recurrence relation, first we divide (2) by N :

1. Divide
the data elements into two sections with equal number of elements

-t O
LO3IDD Design & Analysis of Algorithmg

62
T.N‘__N’ = T(NRRN/2) + 1

N is a power of two, so we can write
4. T(N/2Y/(N/2) = T(N/4)/(N/4) + 1
5. T(N/4)/(N/4) = T(N/8)/(N/8) + 1
6. T(N/8)/(N/8) = T(N/16)/(N/16) + 1
Y R s
8. T@R2=T)1+ 1
Now we add equations (3) through (8) :
the sum of their right-hand sides : .
T(N)/N + T(N/2)/(N/2) + T(N/4)/(N/4) + + T(2)/2 = T(N/2)/(N/2) + T(N/4)/(N/4) +
e+ T(2)2+ T(1)/1 +log N

the sum of their left-hand sides will be equal to

(Log N is the sum of 1s in the right-hand sides)
After crossing the equal term, we get
9. T(NYN=T(1)/1+log N
T (1) is 1, hence we obtain.
10. T (N)=N + N log N = O(N log N)

Hence the complexity of the mergesort algorithm is O(N log N).

Q 74. Define Radix sort and also explain Radix sort algorithm.

Ans. Radix sort : Radix sort puts the elements in order by comparing the digits of the
numbers. Sort objects based on some key value found with in the object. Most often used
when keys are strings of the same length, or positive integers with the same number of digits.

Also known as postal sort, bin sort.

Radix sort algorithm :
O Let us suppose keys are K-digit integers.
0 Radix sort uses an array of 10 queues, one for each digit 0 through 9.
O Each object is placed into the queue whose index is the least significant digit (ihe
1's digit) of the object key.
O Objects are then dequeued from these 10 queues, in order 0 through 9, and put back
in the original queue/list/array container ; they are sorted by the last digit of the key.
Q Process is repeated, this time using the 10’s digit instead of the 1's digit ; values are
now sorted by last two digits of the key. ‘
O Keep repeating using the 100's digit, then the 1000’s digit, then the 10,000’s digit,
Q Stop after using the most significant (107-"'s) digit.
O Objects are now in order in original container.
Q 75. Give an example of Radix sort.
Ans. Let us consider the following 9 numbers :

493 812 715° 710 195 437 582 340 385

Fundamental Algorithmic Strategies 63
We should start sorting by comparing and ordering the one'’s digits :

- Digit Sublist

49(3 (0] 710 340

81|2 1

7115 2 812 582

71]|0 ‘3 493

19|5 4

4 3|7 5 715 195 385

58|2 6

34|10 7 437

38|5 8
e 9

Now, we gather the sublist into the main list again :
710, 340, 812, 582, 493, 715, 195, 385, 437
Now the sublist are created again, this time based on the ten’s digit

Digit . Sublist

7[1]0 0
3|4|o0 1 710 812 715
8|1|2 2
5(8]2 3 437
4|9|3 4 340
7|11|5 5
1{9|5 6
3|8|5 7
4|3]7 8 582 385

U 9 493 195

Now the sublists are gathered in order from O to 9 :
710 812 715 437 340 582 385 493 195
Finally, the sublists are created according to the hundred’s digit.

Digit Sublist
7|10 0-
8(12 1 195
7|15 2
4(37 3 340
3|40 4 437 385 493
5(82 5 582
3|85 6
4|93 7 710 715
U)QS g 812

a7

LO3ID> Design & Analysis of Algorithms fundamental Algorithmic Strategies

64

A; éas:;;1 (l)hesg;‘ %37, 493, 582, 710, 715, 812
1 b 'y U

fully sorted array.
And now we hae & i f Radix sort?
is the running time of Ra i " ,

a 76"_3'::;"3 be d digits in input integers. Radix sort takes O(d*(n + b?l)ohrcveh;hgr?hb
) Ans‘; for representing numbers, for example, for decimal system, b is 10. L e
> ,the (I:fa:’? If K is the maximum possible value, then d would be O(logy(R)). So overall time
value ! %

ity is O((n + b) * logy, (K)).) . .

compmv\;r;tir:h looks more than the time complexity of comparison based sorting algorithm for a ;
large k. Let us first limit k. Let k < = n®. Where c is a constant.

. : This process continue untill all the items are sorted.
gathe(ed up agamn

In that case ; the complexity becomes O(n logy, (n)). But it still does not beat.comparison 14

based sorting algorithms. What if we make value of b larger? Wha.t should be .the value of b
to make the time complexity linear? If we set b as n, we get the time cowplexuty as O(n). In
other words, we can sort an array of integers with range from 1 to n¢ if the numbers are
represented in base n (or every digit takes log,(n) bits). ‘

Q 77. What is a heap? Define maxheap or minheap. (PTU, May 2015, 2014)

Ans. Heap : A heap is a complete binary tree in which each node satisfies the heap
condition. There are two types of heaps or heap tree.

1. Maxheap

2. Minheap

Maxheap : Maxheap is also called descending heap. It is a complete binary tree in \ 10
which every node has a value greater than or equal to value of every child of that node,

14

—
2P

Minheap : Minheap is also called ascending heap. It is a complete binary tree in which
every node has a value less than or equal to value of its every child of that node.

Q 78. Give an appropriate example of heap sort.

Ans. Replace that root with last node of heap tree then keep the root at proper position
i.e. always keep nodes value should be equal to or greater than all its children.

Now, let us consider the following example :

(®

10

9
‘1814108733241

Now the root node is 16 and last node is

d place it at the end of the array in place of it
of item 16 and higher sub tree
item 7.

o 1. Delete the highest item 16 from its position

em 1. Now promote next lower item 14 in place

8 of item 14 in place of item 14. Fijl the place of sub tree 8 with

85

10

14

10

10

14

16

10

10

14

16

LO%D) Design & Analysis of Algorithms Fundamental Algor -

e —————— e e

66 Sop 5. [Find index of inrgest chis of new siemars
Hj+1<kthen
, 2 3 4 6 6 7 B 0 10 if dataj + 1] > datafj) then
[T”'? 9 | 10| 14 | 18 j=j4+1
Step 8. [Rocrealotrwnewhup]
Hepoatlhrm;ghaloplowma,ahdmmmj,hmp
Step 7. (Interchange element)
datafi] = data(j)
Step 8. [Obtain left chiid)
1 2 3 4 5 6 7 8 9 10 i=j
3|l 21| 4| 7| 8|9 |10]|14]16 j=2%
Step 9. [Obtain index of next largest child]
ifj+ 1<k
ifdata[j+1]>da1ammenj=j+1ehed;>n
thenj=1
Step 10. [Copy element into its proper placej
datalj] = temp
1 2 3 4 5 6 7 8 9 10 Step 11. Exit.
2 (134|789 |10]|14]16 Qso.wmodownthecomplcxnyofhaqm
Ans. O(n * log (n))

Q 81. Briefly describe the basic idea of quicksort.
Ans. Quicksort is similar to mergesort; divide-and-conquer recursive aigorthm. 1 is the
oneofthefastestsorﬁngalgomodeksonexewleshanbgn)mw,mof,nzj
1 2 3 4 5 6 7 8 9 10 in the worst-case.
Basic Idea :
g Pickoneelemenlintheanay.wtid:wibel’npivot.
2. Make one pass through the array, called a partition step, re-arranging the entnes
so that :
down algorithm of sort. (PTU, May 2015) (a) The pivot is in its proper place.
:f'::;'maa:f,, iy (b) Entries smaller than the pivot are 1o the left of the pivot
where data = Represents the list of elements. (c)Enu:leslargertha'nmepNotarebandﬂ. _)
n = Represents number of elements in the list. 3. Recursively apply quicksort o the part of the array that is 1o the left of the pivot, and
to the right part of the array.
Step 1. [Create initial heap] Here we don't have the merge step, at the end all the elements are in the proper order.

call Heap_Creation(data, n)
Step 2 :Startsort] Q 82. Write the average, best and worst case complexity for the quick sort.
" Repeat through step 10 fork=n,n-1, ..., 2 Ans. Average Case : O(N" log (N))
Step 3. [Interchange elements] Best Case : O(N" log (N))
. data[1] = data[k] The best case is when the pivot is the median of the amray, and then the left and the
Step 4 lenp-:ia 1 right part will have same size. - .
' Bl There are logN partitions, and to obtain each partitions we do N comparisons (and not

;i; more than N/2 swaps). Hence the complexity is O(N"log (N)).

LO3DD Design & Analysis of Algorithms
68

Worst-case : O(N?)

t) element. Then one of the
ot is the smallest (or the larges
This happens when the pivot is

g nts.
partitions is empty and we repeat recursively the procedure for n—1 eleme
’ »

Is for the quick sort.
pest and average case analys
Q 83. Expiain the worst,

e T}N)=T(i)+T(N—i—1)+(':N ia
i ition with i elements,
gxxﬁxxzzﬂﬁon with N — i — 1 elements, plus
a ‘metimetobuildthepartitions.
Worst case analysis : The pivot is the smallest element
: TN)=T(N-1)+cN,N>1
Telescoping :
TIN-1)=T(N-2)+C(N-1)
T(N-2=T(N-3)+C(N-2)
T(N-3)=T(N-4)+C(N-3)
T@=T(1)+C2
Add all equations

TN +T(N-1)+T(N=2)+ ..+ T@=T(N=-1)+T(N-2)+ .. T@+T (1) +

C(N)+C(N-1)+C(N-2)+
TN =T(1)+C(2+3+..+N)
T(N=1+C(N(N+1)/2 -1)
Therefore T (N) = O(N2)
_Best case analysis : The pivot is in the middle
T(N) = 2T (N/2) + cN
Divide by N :
T(N)/N =T(N/2) / (N/2) + C
Telescoping :
T(N/2) / (N/2) = T(N/4) / (N/4) + C
T(N/4) / (N/4) = T(N/8) / (N/8) + C
T(2)/2 =T(1)/(1)+C
Add all equations :
T(N)/N + T(N/2) / (N/2) + T(N/4) / (N/4) + +
T(2)/2 = (N/2) / (N/2) + T (N/4) / (N/4) + + T(1) / (1) + c logN
After crossing the equal terms :
T(N)/N =T(1) +cLogN=1+cLogN
T(N) =N+ Nclog N
Therefore T(N) = O(N log N)
Average Case Analysis :

T(N) = O(N log N)

+C.2

Fundamental Algorithmic Strategies

89
The average value of T(1) is 1/N times the sum of TLO) through T(N - 1
1
5 Y. T =0thruN -1

2 ’
5 TN) = & (3 T()+eN
Multiply by N
NT (N) = 2(2T(1))+CN “N
To remove the summation, we rewrite fhe equation for N - 1 ¢

(N=1)T(N=1) = 2(Y T())+C(N-19?.j= 0 thru N — 2 and subtract.
NT(N)-(N-1)T(N-1)=2T(N-1)+2cN-c¢c
Prepare for telescoping
Rearrange terms, drop the insignificant C :
NT(N) =(N+1) T(N-1)+2cN
Divide by N(N + 1) :

TN N s 20N
Rien = DT i)

Telescope :
TN
Neh) - T(N=1)/N + 2c/(N+1)
M = T(N=2)/(N-1) + 2c/(N)
(N)
T(N-2)
= T(N=3)/(N-2) + 2c/(N—1
AT = TSR £ 20N
@ _T0, 2
8 2 8
Add the equations and cross equal terms :

L1 . mea N+
N+ 2 +2c},) ek

T(N) = (N+1) [% +2¢ Y G)}

The sum 2(%).1:3(0 N - 1 is about log N.

Thus T(N) = O(N log N).

Fundamental Algorithmic Strategies
71

The pivot selected is 3. Indices are run starting at both ends of the m
starts on the left and selects an element that is larger than the pivot, while ar;oth; ‘::::

LOaD> Design & Analysis of Algorithms

sadvantages of quicksort?

= Q 84. What are on:l‘t-'»o"t'mddi the right and selects an element that | ller th
i jvantages of QuicH ;:] . starts on the right and selects an element that is smaller than the pivot. In this case, num!
o of the fastest algo - avetr:gesomng takes place in the array — this is 4 and 1 are selected. These elements are then exchanged so, . -
L, additional memory g esort, mergesort needs additional
11 2)|3]|5s| 4

2. Does not processing). Compare with merg
; l——— —

This process repeats untill all elements to the left of the pivot <= the pivot, and elements

s 2
t-case complexity is O(N23).
1. The wors to the right of the pivot are >= the pivot. QuickSort recursively sort the two sub array, so

. i t case.
2. Very slow In the wors
3. In the worst case, could cause
Q 85. Write down the algorithm ©

Ans. Algorithm of quick sort :

ickSort(list, first, last)
- o list = Represents the list of elements . '
Ny first = Represents the position of the first element }n the I.|st.
last = Represents the position of the last element in the list.

a stack overflow.
f quick sort. (PTU, May 2013 ;. Dec. 2010, 2008) iTalalsls

Q 87. Explain the concept of lower bound on sorting with suitable example.

Ans. Lower bound : A lower bound of a problem is the least time complexity required
for any algorithm which can be used to solve this problem.

O Worst case lower bound.

QO Average case lower bound.

The lower bound for a problem is not unique. e.g. Q (1), Q (n), Q (n log n) are all lower
.bounds for sorting.

(Q (1), Q (n) are trivial). .
A present, if the highest lower bound of a problem is Q (n log n) and the time complexity

Step 1. Initialize
- low = first
high = last
pivot = list[(low + high)/2]

Step 2 Remat through Step 4 Whlle(low <= h'gh)' . " of the best a'gorithm is O(nz)] .
Step 3. while (listflow] < pivot) repeat step 4. " O We may try-to find a higher lower bound.
Q We may try to find a better algorithm.

Q Both of the lower bound and the algorithm may be improved.

Step 4. low = low + 1.
Step 5. while(list [high] > pivot) repeat step 6.
Step 6. high = high — 1
Step 7. if(low <= high) O(n log n), then the algorithm is optimal.
temp = list{low] v ' The worst case lower bound of sorting : 6 permutations for 3 data elements
a, az

If the present lower bound is Q(n log n) and there is an algorithm with time complexity

list[low] = list[high] .
listfhigh] = temp 1 2 5

low = low + 1 1 3 2

high = high — 1 2 1 3

Step 8. if(first < high) 2 3 1
Call QuickSort(list, first, high) 3 p 2

3 2 1

Step 9. if(low < last)
call QuickSort (list, low, last) Example : Straight Insertion Sort :
Step 10. Exit Input data : (2, 3, 1)
The Quick sort algorithm uses the O (N log 2N) comparisons on average case. 1. ay:ap
Q 86. Give an appropriate example of quicksort. 2. ap:ag ay©>ay
3. aq:ag a; & a

Ans. Lb : Ub
sl 23] s] 1 Input data : (2, 1, 3)
¥ 1. ay:ap ay e ap
Pivot : 2. ay:ag

e

LOIDD Design & Analysis of Algorithms

72 ———
ertion sort
for straight ins
Declsion tree T
L a,>8, [2.1.3-0.2.9)
) a,.8,;
(1.32)—(1, ¥
378 | 3.9)21.3) a,<a, [(.2.3) @ 1.2)
a8,
3){1.23)
8,78 g:,zu!.&z) a,<ay
2.1-23.1 123 53)
ek A £ b a,>a, [31.3)(1.2.3) @2 3.1)
i, a,a
(123123 5.5 [(32-1123) -
(1.3.21.3.2 e | 3.1)+2.1.3) 8,58, 1.2.3) 1.3.2)
8,<8; | 23,1231 A ,

(1.2.3) il

. (1.2,3)
|

.Lower bound of sorting : To find the lower bound, we have to find the smallest depth
of a binary tree. n! distinct permutations. n! leaf nodes in the binary decision tree.
Balanced tree has the smallest depth :
log(n!)1= Q(n log n)
lower bound for sorting : Q(n log n)
Method :
log(n!) = log(n(n — 1) 1)

.—.Ioge}lnxdx
1

= loge [xInx - x]} ’

=loge(ninn-n+1)
=nlogn—-nloge+ 1.44
>nlogn—-144n

= Q(n log n) 1 2 3§ 4

Q 88. Write a short note on selection problem.

Ans. Selection problem :

Input : A set A of n elements or numbers and an integer i, with 1 <i<n.

Output : The element x € A that is larger than exactly i — 1 other elements of A.

The selection problem can be solved in O(n log n) time, since we can sort the numbers
using heapsort or mergesort and then simply index the ith element in the output array.

Q 89. Define median and order statistic.

Ans. The ith order statistic of a set of n elements is the ith smallest element.

_Foreg. : The minimum of a set of elements is the first order statistic (i = 1), and the
maximum is the nth order statistic (i=n).

Fundamental Algorithmic Strategies

A median, informally, is the “halifway point” of the set Li
When nis odd, the median is unique, occuring at | = (r:. + 1)/2. When i
two median, occuring at i = n/2 and i = /2 + 1, Thus, regardless of o M8 even, there are
occurati=L(n+1)/2landi=l(n+ 1)2] Parity of n, medians

Q 90. How many comparisons are necessary and sufficient for co
the minimum and maximum?

mputing Solh
Ans. We can easily obtain an upper bound of n - 1 comparisons for finding the minimum

of a set of n elements. Examine each element in turn and keep track of the smallest one. The

algorithm is optimal, because each element, except the minimum, must be compared 10 a
smaller element at least once.

Minimum(A)
1. min « A[1]
2. fori« 2 to length{A]
3. doif min > A[i]
4. then min « A[i]
5. return min

nge minimum(A) has worst-case optimal number of comparisons. Well, to compute
the minimum n — 1 comparisons are necessary and sufficient. The same is the true for the
maximum. So, the number should be 2n — 2 for computing both.

Q 91. Write a note on simultaneous minimum and maximum.
Ans. Simultaneous minimum and maximum : Some applications need to determine
both the maximum and minimum of a set of elements. For example : graphics program trying

. to fit a set of points on to a rectangular display. Independent determination of maximum and

minimum requires 2n — 2 comparisons. In-fact, at most 3.n/2| comparisons are needed.

We maintain the minimum and maximum of elements seen so far. We process elements
in pairs. Then we compare with each other, and then compare the larger element to the
maximum so far, and compare the smaller element to the minimum so far.

This leads to only 3 comparisons for every 2 elements. If we compare the elements of
a pair to each other, the larger can't be the minimum and the smaller can’t be the maximum.
So we just need to compare the larger to the current maximum and the smaller to the current
minimum. It costs 3 comparisons for every 2 elements.

The previous method costs 2 comparisons for each element.

.........
Wioay = Sene.. amane® e SSSEBEESE

Larger siements
Compare to the current maximum

(&)
@ Smaller elements .

Compare to the current minimum

LO3IDD Design & Analysis of Algorithms
74

tting up the initial values for the min and max depends on whether n is odd or even.
: o “ ;pmpa,e the first two elements and assign the larger to max and the smaller to
e y
S odd, set both min and max to the first element.

3(n-2) +1 (for the initial comparison) = % -9
2

min. lfnis

If n is even, number of comparisons =

<3ln2)

3(n-1)
2
Thus total number of comparison is < 3 /2]
Q 92. Explain selection problem in expected linear time.
Ans. Selection in expected linear time : Modeled after randomized quicksort and
exploits the abilities of Randomized-Partition (RP). Randomized-partition returns the index K
in the sorted order of a randomly chosen element (pivot). If the order statistic we are interested

=3n2]

If n is odd, number of comparisons =

in, i, equals k, then we are done. Else, reduce the problem size using its other ability. RP-

rearranges the other elements around the random pivot. If i < K, selection can be narrowed
down to A[1 ... K - 1]. Else, select the (i — K)th element from A[K + 1 nj.

(Assuming RP operates on A[1 n] For Alp r], change K appropriately.
Randomized Quicksort

Quicksort(A,p,r) Rnd-partition (A, p, r)
if p<rthen i - = Random (p, r) ;
q : = Rnd-Partition(A, p,) ; Alrl & Ali] ;
Quicksort(A, p, q — 1) ; X, i:=Alr,p-1;
Quicksort(A, g + 1, 1) forj:=ptor-1do
fi if A[j] < x then
Ap -1 ii=i+1;
e Ali] > Af]
EMENY f
; od;
lyl Mo.a-nAeta Ali+ 1o Al;
S et returni + 1
[_Pewon | 375 ERUEN
<5 25
Randomized-select
F“a;:domized-select(A, P, r. i) // select ith order statistic
fp=r

2 then returm A[p]

3.9« Randomized-Partition (A pr)
4 Keq-pyy
S.ifi=k

Fundamental Algorithmic Strategies

P

5
6. then return A[qg]
7. elseif i < k
8. then return Randomized-Select (A, p, g - 1, i)
9. else return Randomized-Select (A, g + 1, r, i — K)

+—K— d
| sma [T A]
P q N 1
1 ‘\\
] K
i<K E':K \\':
S —
]
v
P a1 Alqlisthe q*1 f
answer .
To find the ith order To find the (~K)th order
statistic in Afp ... 1] statistic in Alq+1 ... 1)

Algorithm analysis :

The worst case : Always recurse on a subarray that is only 1 element smaller than the
previous subarray.

-~ T(n) =T(n~=1) + O(n)
= 0(m)

The bese case : Always recurse on a subarray that has half of the elements smaller
than the previous subarray.

T(n) = T(n/2) + O(n)
= O(n)
The average case : We will show that T(n) = O(n).
For 1 <K <n, the probability that the subarray A[p .. g] has K elements is 1/n. To obtain

an upper bound, we assume that T(n) is monotonically increasing and that the ith smallest
element is always in the larger subarray. So we have

T(n) <

n
% Y (T(max)(K -1,n-K)+O(n))
K=1

T(n)

IA

™M=

1 (T(max)(K-1,n-K)+O (n))
n

[}

K=1

n
% Y’ (T(max) (K- tn-K)) + O(n)
K=1

iA

2 n-1
£ Z T(K)+O(n)
N glni2)

LORDD Design & Analysis of Algorithms

76
C[K=1iK > /2]
- max (K-1.n-K= {n—Kist[n/?]

X 1 | 2| ..] fw2l [[w2let] . [n-1] n]

max (K-1,n-k) [n-1 | n-1 . | ndn2l n/2] wo | n=2 n-u

if n is even each term from T ('n/2) to T(n - 1) appears exactly twice.
If n is odd, each term from T (n/2]) to T(n - 1) appears exactly twice and T(Ln/2)y
once.
app'.aaBrgz;cause K=[n2l, K-1=n-K=Ln2l
Solve this recurrence by substitution : Let us assume T(n) < cn for sufficiently large
c. The function described by the O(n) term is bounded by an for all n > 0.
Then, we have

g & 2 &
T(n) < ; Z K)+0(m) < = Y cK+an
K= K=[n/2]
n-1 n2-1 o
=& W= ZK +an = Ll L (v2]-9 2] +an
L P Kt 2 2

<2_<: (n—1)n_(n/2—2)(n/2—1) g
" n 2 2 an

e 3L+-r1—2 +an= c(3n+1 2) n
“hla T2 42 n)t?

3cn ¢ cn ¢
< —+—+an=cn-|—-=-
42 (4 a”)

Then, if we assume that T(n) = 0(1) for n < 2¢/(c - 4a),
We have T(n) = O(n).
Q 93. Explain selection problem in worst-case linear time.
A;ls Section in worst-case linear time : Select the ith smallest element of S ={ay, a,
...... ; 8
Use so called prune and search technique :
Let xS, and partition S into three subsets
Sy ={a] aj< x}
S; ={a| 3= x)

fundamental Algorithmic Strategies
orssolias

77
S, ={a| 8> x}

it |Sy| > I, search ith smallest element in Sy recursively, (prune S;and S, away),

Else if |Sq] + |Sy| > i, then return x (the ith smallest element),

Else search (i - (|S,| + |S,|)) th in S, recursively, (grune S and S, away).

Now how to select x such that S, and S, are nearly equal.

The way to select x

At least (3n/10) - 6 elements < x

f(’fﬁ(ﬂ'e
AR U.ﬂ

At least (3n/10) - 6 element > x
Because each of 1/2 [n/51-2 groups
contributes 3 elements which are > x

Divide element into (/51 groups
of 5 elements each

Find the median of each group
Find the median of the medians

Select ith element in n elements :

Divide n elements into [n/57 groups of 5 elements.
Find the median.of each group.

Use SELECT recursively to find the median x of the above [n/57] medians.

Partition n elements around x into S1, S2 and S3.

If |S,| > i, search ith smallest element in S1 recursively.

Else if |S4] +|S,| > i, then return x (the ith smallest element).

Else search (i — (|Sq] + |Sz|)) th in S5 recursively.

Analysis of Select :

Step 1, 2, 4 take O(n), step 3 takes T('n/5]) .

Let us see step 5 : : -

At least half of medians in step 2 are > x, thus at least 1/2 [n/51 - 2 groups contribute 3

D G o =R

elements which are 2 x. i.e., 3(1/2 /511 - 2) > (3n/10) -6.

Similarly the number of elements < x is also at least (3n/10) - 8. Thus, |S,| is at most

(7n/10) + 6, similarly for |S3|. Thus SELECT in step 5 is called recursively on at most (7n/10)
+ 6 elements.

Recurrence is :

0(1) if n < some value (i.e. 140)
T(0) = \7(fn/5])+ T (70/10+6)+0(n) ifn > the value (ie., 140)

LORDD Design & Analysis of Algorithms
78
Solve recurrence by substitution
pose T(n) < cn, for some C.
. T(n)scfrv51+c(7n/10+6)+an
<cn/S +c+ 7/10 cn + 6¢c+ an

=_9_.cn+an+70
10

=cn + (—cn/10 + an + 7¢)
ich i i 7¢ <0
Which is at most cn if —cn/10 + an +
iLe. ¢ > 10a (n/(n — 70)) when n > 70.
So select n = 140, and then ¢ > 20a.
Note that n may not be 140, any integer > 70 is OK.

Q 94. The order of complexity of binary search (successful case) in best case is
. in average case is and in worst case is (PTU, May 2007)
Ans. The order of complexity of binary search (successful case) in best case is O (1) in
average case is O (log n) and in worst case is O (log n).)
Q 95. What is stable sorting? (PTU, May 2013, Dec. 2010, 2009, 2008)
Ans. Stable sorting : A sorting algorithm is said to be stable if two objects with eqijal
keys appear in the same order in sorted output as they appear in the input unsorted array.
For example, in the following input the two 4’s are indistinguishable.
1.4a,3.4b 2
And so the output of a stable sortirgg algorithm must be :
1,2, 3,43, 4b g
Some sorting algorithms are stable by nature like insertion sort, merge sort, bubble
sort, etc. And some sorting algorithm are not, like heap sort, quick sort etc.
Q 96. What is the time complexity of binary search? Explain.

: (PTU, Dec. 2014, 2013)
Ans. Time complexity of binary search : The best case complexity is 0(1) i.e. if the
element to search is the middle element. The average and worst case time complexity are

O(log n). '
Q 97. Write a code for maximum heap. (PTU, Dec. 2005)

Ans. Max Heap : Suppose H is a complete binary tree with n elements. Then H is .

called a heap or maxheap, if the value at N is greater than or-equal to the value at any of the
children of N.

Q 98. Consider a set of elements {12, 34, 56, 73, 24, 11, 34, 56, 78, 91, 34, 91, 45).
Sketch the heapsort algorithm and use it to sort this set. Obtain a derivation for the
time complexity of heapsort, both the worst case and average case behaviour.

(PTU, Dec. 2011)
Ans. Consider a set of elements {12, 34, 56, 73, 24, 11, 34, 56, 78, 91, 34, 91, 45).
h the heapsort algorithm and use it to sort this set. Obtain a derivation for the time
complexity of heapsort, both the worst case and average case behaviour.

Sketc

fundamental Algorithmic Strategies

Simulation of Heapity
Initial

12134 |56| 73 | 24 | 11
112 13141516 |78

Number of elements = 13 = n : | = Floor (W2)=6

So consider the heap with 6 as oot, the left subtree is a one element heap, the right

subtree is a one element heap, and the root may be violating the heap property. So 11 comes
down and 91 becomes the 6th node.

121 34 | 56 |73 | 24| 91 | 34

56 | 78 | &1 34‘11
1123415817

8‘9 10 11112

13‘

121

734 245

56,8

| 789 |91,10]| 34,11

80 LORDS Design & Analysis of Algorithms fundamental Algorithmic Strategies
Lo O — e
T e o Sy loft subtree Is a one elemont heap Now let | = 3. We have the heap with 3 S ——
. have the heap with & ae root and p a8 root and left sub tree |
:lov: lho‘\ ;umférjl: nn:no olomont heap.Tho olement at 5 ls violating the heap property sub tree is a one element heap. The element at 3 is violating the h;::ao :‘nd the Agnt
N:"o" ;‘f gomo up to position 5, and 24 go down the position 10. come up to position 3, 56 go down to position 8, oPenty, 50 let 94
il : -
12 |34 |66 |73 | 91 91 |24 | 66 |78 2; :13: 112 42 112 324 91178 | 91 56 34 | 56 | 73 | 24 34 | 11 | 45
8 °] 1 1 3 4 5 ;) 7
v |2 |3 |4 [6]6[7 8910111213—\
Z N '
12,1
N 121

34.2 |

91,3

734 91,5*

78.4* 91,5" 58 6° (347

568 || 78,9 | [24,10]| 34,11]
o N

56,8 || 73,9 24,10(| 34 11 11,1211 45,13

Now let | = 4. We have the heap with 4 as root and left sub tree Is a one element heap
and the right sub tree Is a one element heap. The element at 4 is violating the heap property,
so let 78 come up to position 4, and 73 go down to position 9.

Now let | = 2. We have the heap with 2 as root and left
sub tree is a heap. The element at 2 is violati
position 2, and 34 go down to position 5.

sub tree is a heap and the righ
ng the heap property, so let 91 come up t

12 |34 |56 (78 |91 [91 [34 [56 [73 |24 |34 | 11 | 45 12 191 |91 {78 |34 |56 |34 (56 [73 |24 |34 | 11 | 45
112 3]a |56 78 |9 [10 11 |12 |13 112|814 |56 78 9 |10 1273
121 121

342 | 56,3 _ - 912"

78.4* 91,5* [o1,6* 347 | ; 78,4* 34,5

568 |[73.9 | [2a.10|{ 34 1 11,12|| 45,13 56,8 || 73,9 |24.1o”34.11}

LORDS Design & Analysis of Algorithms
82

fundamental Algorithmic Strategies
ot achblicl

. 83
is a heap and the righy p—s -
‘ ‘ et Q 100. Apply the quicksort technique on the following list :
~ 1. We have the heap with 1 as roo ety odie o - .

NOY” |e‘t: ap. The element at 1 is violating the heap property, SO P 1o s 1, p 4 23 s — -
. deé‘ T . Ans. Quick sort technique for L = <3, 1,4, 1,5, 9, 2, 6, 5, 4> is as follow -
position 1, an go v
91| 12| 91| 78 | 34 56 | 34| 56 | 73 24 | 34

45
—< T 10| 11 | 12| 13
5| 6 8 |9
1] 23] 4[5 -

3|1]4]1|5]9]|2]|6]|5|@

select and hide pivot

>< ' partition

restore pivot

L G
NN 3 211 9141615
4513 = @ — X 2, @
N—" - select and hide pivot
wa 12 is compared with its two childrén, 73 moves up and 12 moves down

s 3111211 51| 4

X ' partition
91,1* : |

X X restore pivot
[78.2- 91,3 :

-
w
N
ki
(8]
S
(o2}
(o]
[(8,]

Ll Gl 1 LM Gll
734" 34,5 | [s6.6° [347 . 1 213 5| 4 916
568 |[129 [2410|[3411] [112|[4513 , 1 2| 3|[all 54 916 '
X X straight insertion sort
Q 99. What is binary searching? . (PTU, Dec. 2004) 111 23|ala|5]5]|6]09
Ans. A binary search is a technique for quickly locating an item in a sequential list. A
Sequential search is a procedure for searching a table that consists of starting at some table

it Q 101. What is the worst case running time of quick sort? (PTU, May 2008)
position (usually the beginning) and comparing the file-record key in hand with each table-
ecord key, one at a time, until either a match is found or

Ans. In the worst case, recursion may be n levels deep (for an array of size n)
searched all sequential positions have been QO But the partitioning work done at each level is still n
| Q O (n)*O(n)=0(n?)

e

LO3DS Design & Analysis of Algorithms

= Q So worst case for Quicksort is O (n2)
o]

happen? ;
Q When doesm‘::; ,:angements that could make this happen
Q@ There aré

cases :

re two common
Q Here athe array is already sorted . ite order)
R the array is inversely sorted (sorted in the Dpposs :
O When

: - ? (PTU, May 2008)
a 102. What - ::ve: rs:ertri:g' tt;::r::u:‘::at is typically used for sequencing small Ilsts..
. aubble'SO th;e first item to the second, the second to the third and so on until it
i oompanfn 3r&er It then swaps the two items and starts over. The sort may alternate
R : :,rt.:list to ihe bottom and then from the bottom to the top. The name comes
i top.o that items are raised or “bubbled up” to the top. ;
e var:lrite a Heapsort algorithm and analyse the same. (PTU, Dec. 2004)
2n1s. r-deapsort - The data structure of the heaps?n algorithm i.s a hear|). Thg dta,:a
sequence to be sorted is stored as the labels of the binary tree. As shoyvn ater, in the
implementation no pointer structures are necessary to represent the tree, since an almosts
i can be efficiently stored in an array.
wmp':i:i‘:: :Ie;orithm : The following description of heapsort refers to fig. 2 (a) — (e).

Retrieving the maximum element and restoring the heap

If the sequence to be sorted in arranged as a heap, the greatest element of the sequence

can be retrieved immediately from the root (a). In order to get the next-greatest element, the
rest of the elements have to be rearranged as a heap. ‘

The rearrangement is done in the following way : Let b be a leaf of maximum depth.

Write the label of b to the root and delete leaf b (b). Now the tree is a semi-heap, since the
Toot possibly has lost its heap property.

Making a heap from a semi-heap is simple : Do nothing if the root already has the
heap PWﬂy, otherwise exchange its label with the maximum label of its direct descendants
(€). Let this descendant be v, i.e. make a hea

Process stops when a vertex

p from the semi-heap rooted at v (d). This
Case at a leaf.

is reached that has the heap property (e). Eventually this is the

ndame"ta' Algorithmic Strategies
Fu

85
Q 104. Explain In detail quick sorting method. Provide a complete analysis of

uick sort- .) (PTU, May 2012 ; Dec. 2005)
q Ans. Quick Sort : This is the most widely used internal

’ - sorting algorithm. It is based on
diV.lde.and-conquer type i.e. Divide the problem into sub-problems, until solved sub problems

e found.
e Algorithm :

This algorithm sorts an array A with N elements
[Initialize] TOP : = NULL

IfN>1,then TOP : = TOP + 1, LOWER [1] : = 1, UPPER [11:=N
Repeat steps 4 to 7 while TOP = NULL
Set BEG : = LOWER [TOP], END : = UPPER [TOP), TOP := TOP -1
Call QUICK (A, N, BEG, END, LOC)
If BEG < LOC — 1 then
TOP :=TOP + 1, LOWER [TOP] : = BEG
UPPER [TOP] = LOC -1
End If
.7. 1fLOC + 1 < END then
TOP : = TOP + 1, LOWER [TOP] := LOC + 1
UPPER [TOP] : = END
End If
8. Exit

The Quick sort algorithm uses the O (N log, N) comparisons on average.
Q 105. Write a recursive algorithm for binary search tree and complexity.

(PTU, May 2009)

on s N>

Ans. Binary search (A [0...N - 1], value, low, high) {
if (high < low)

return —1 // not found

mid = low + (high — low) / 2

if (A [mid] > value)

return BinarySearch (A, value, low, mid — 1)

else if (A[mid] < value) ‘

return BinarySearch (A, value, mid + 1, high)
else

return mid // found

}

It is invoked with initial low and high values of 0 and N — 1.

Q 106. Write Heapify algorithm. (PTU, Dec. 2006

Ans. The bottom up insertion algorithm gives a good way to build a heap, but “Rober
Floyd” found a better way, using a merge procedure called heapify.

Given, two heaps and a fresh element, they can be merged into one by making the ne\
one the root and trickling down.

Build-heap (A)
n=|A]
for i= 122‘! to 1 do
Heapify (A, 1)
Heapify (A, 1)
eft=2
nght=2i+1
i (left <n) and (A [left] > A [i]) then
max = left
else .
max =1
{right < n) and (A [right] > A [max]) then
max = nght
(max = i) then
swap (A. [zl A [max]) .
Heapify (A. max)
Q 107. What is the time complexity of merge sort?
OR
Write the worst case and best case running time of merge sort.
- (PTU, Dec. 2011)
Ans. The time complexily of merge sort is always O (n log n) in all the cases such as
best case or worst case.
Q 708. Name three conditions under which sequential search of a list is preferable
to binary search. (PTU, May 2009 ; Dec. 2008)
Ans. 1. in near search there is no need that list must be sorted.
2. For binary search one must have direct access to the middle element in any sub list.
3. In binary search keeping data in a sorted amay is normally very expensive when
fhese are many inserion and deletions, operation are applied.
Q 109. What is the time complexity of selection sort? (PTU, May 2010)
Ans. Selection sort has no end conditions built in, so it will always compare every element
i every other element. This gives it a best-worst-and average-case complexity of O(n?).
Q 110. Analyze the bubble sort algorithm. Argue on its best case, average case
and worst case time complexity. (PTU, Dec. 2005)
Ans. Bubble Sort : In this sorting algorithm, multiple swapping take place in one iteration.
Smaller elements move or *bubble’ up to the top of the list. In this method, we compare the
adiacent members of the list to be sorted, if the item on top is greater than the item immediately
below 1, ithey are swapped.
Algorithm : BUBBLE (DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in DATA.
1. Repeat Steps 2and 3for K= 110 N - 1

—— -

(PTU, Dec. 2007)

Design & Analysis of Algorith
LOIDD 9 ﬁ&

Fundamentdl Algorithmic Strategies

2. Set PTR : = 1 [Initialize pass pointer PTR)
3. Repeat while PTR < = N - K : [Execute Pass]
(a) I DATA [PTR] > DATA [PTR + 1}, then

Interchange DATA [PTR] and DATA [PTR + 1]
End if

(b) SetPTR:=PTR 4 1
[End of inner loop)

[End of step 1 outer loop]
4. Exit,

87

The total numbers of comparissons in Bubble sort are :
=IN=-1)+(N-2)._+2+1

N
=IN-1)°Z=0(N)

The time required to execute the bubble sort algorithm is proportional to n,, where nis

the number of input items. The Bubble sort algorithm uses the O (n?) comparisons on average.

The worst case is that you will have the smallest value in the last space in the armay.

This means that is will move exactly once each pass towards the first space in the array. It wil
take n —1 passes to do this, doing n comparisons on each pass : O (n?)

* The best case is that the data comes to us already sorted. Assuming that you have a

smart implementation (which you should, because it's easy) which stops itself once a pas

- makes no changes, then we only need to do n comparisons over a single pass : O (n).

Q 111. Give the recurrence relation for the time complexity of merge sort algorithm.
(PTU, May 2015 ; Dec. 2013)
Ans. Merge sort is a recursive algorithm and time complexity can be expressed as
following recurrence relation.
T(n) = 2T(n/2) + O(n)

Q 112. Use the master method to show that the solution to the binary-search

recurrence relation T(n) = 7(123-) + 6(1) is T(n) = 6(ig n). (PTU, May 2014)

Ans. We can use the Master theorem case 2 because from a=1 and b=2. We have
nlogba = n°=1, so for k=0 f(n) = B(1) = (n'sb2 Igkn).
This gives that
T(n) = 6 (n'ogb2 igk+! n) = 6(Ig n)
Q 113. List out two drawbacks of binary search algorithm. . (PTU. Dec. ?014)
Ans. (1) In binary search the elements have to be arranged either in ascending or

descending order. ' N o
(2) Each time the mid element has to be computed in order to partition the list in two

Sublists.

— N

88

LO3D) Design & Analysis of Algorithms
Q 114. Sort the following list using merge sort U
L= <5,8,3,9210,1,40>) . 2005)

Ans. Pass 1 : After merging each pair of elements following list of sorted pairs as obtain:
1 40
s 8 3 9 2 10

\-—v‘/
et

technique

Pass 2 : After merging each pair of elements following sorted quadra

plets are obtained
3589 121040

Pass 3 : Following sorted list is obtained after merging each sorted quadraplets.

172 35 8 9 10 40

Whole process of sorting

Q 115. Amongst the various sorting techniques as Merge sort, insertion sort and
bubble sort, which is best in worst case. Support your arguments with analysis.

(PTU, Dec. 2010 ; May 2013, 2010, 2009)
Ans. Insertion So

rt : Insertion sort is a simple sorting algorithm that is relatively efficient
for small lists and mostly-sorted lists, and often is used as part of more

sophisticated algorithms.
It works by taking elements fro

m the list one by one-and inserting them in their correct position
into a new sorted list. In arrays, the new list and the remaining elements can

share the array's
space, but insertion is expensive, requiring shifting all following elements over by one. The
insertion sort works just like its name suggests —

it inserts each item into its proper place in
the final list. The simplest implementation of

this requires two list structures - the source list
and the list into which sorted items are inserted. To save memory,

most implementations use
an in-place sort that works by moving the current item past the already sorted items and
'”‘_"M\V swapping it with the preceeding item until it is in place. Shell ort (see below) is a
variant of insertion sort that is more efficient for larger lists. This method is much more efficient
than the bubble sort, though it has more constraints.

Bubble Sort : Bubble sort is a straightforward and simplistic method of sorting data

W-»

Fundamental Algorithmic Strategies

: 89

. 1 i e
\hat is used in computer science education. The algorithm starts at the beginning of the dais
get. It compar

es the first two elements, and if the first is greater than the second, it "
V am

them. t continues doing this for each pair of adjacent elements 10 the end of the data get_ |
then stars again Wi 2

th the first two elements, repeating until no swaps have occurred on the
|ast pass- While simple, this algo@hm is highly mefﬁcient and is rarely used except in education.
A slightly petter variant, cocktail sort, works by inverting the ordering criteria and the pass
direction on alternating passes. Its average case and worst case are both O (n2),

Merge Sort : Merge sort takes advantage of the ease of merging already sorted lists
intoa new sort

ed list. It starts by comparing every two elements (i.2., 1 with 2, then 3 with 4.)
and swapping them if the first should come after the second. it then merges each of the
resulting lists ©

 two into lists of four, then merges those lists of four, and so on ; unil at last
two lists are merged int

o the final sorted list. Of the algorithms described here, this is the firs
that scales well to very large lists, because its worst-case running time is O (n log n).

Q 116. How binary tree can be used for searching an element? Explain.

Ans. Binary
sorted array. It is

much more efficient than a linear search, where we pass through the array
elements in tum u

ntil the target is found. It does not require that the elements be in order.
The binary search repeatedly divides the array

in two, each time restricting the search
to the half that should contain the target element.
In this example, we search for the integer

(PTU, Dec. 2007)
Search : The binary search is the standard method for searching through a

5 in the 10-element array below :

[21s]s] 3\10\12\15\13\20\21\
Loop 1-Look at whole array
Low index = 0, high index = 9
Choose element with index (0 + 9) [2=4

[2]s]s]s Ti] 12] 15| 18] 20{ 1
Compare \‘la\ue (10) to target

10 is greater than 5, sO the target must be in the lower half of the array
Set high index = (4-1) = 3

Loop 2
Low index = 0, high index =3
Choose element with index (0 + 3)2=1

[2]s]e e \10\12\15\18\20@
Compare value () to target
5 is equal to target
Target was tound, index = 1

90
Q 117. Sort the follo

L= <5, 13, 2, 25.
Ans. First we call BUILD-

i
2

LO%DS Design

wing using Heapsort iochnlquo

7,17, 20, 8, 4>.
MAX-HEAP heap size [A] =9

LAY
g uk

i=4,321

S0,

Now we call MAX-HEAPIFY (A, 3)

& Analysis of Algorithmg

(PTU, May 200g)

Fundamental Algorithmic Strategies
e

91

92 LO3DS Design & Analysis of Algoﬂthms

—— fundamental Algorithmic Strategies

Now for i «- 9 down to 2 wheni =9 When | = 8, do exchange A (11 & A (8] and heap size
do exchange A [1] & A [9] [A] «8-1

ie., 25 o 4 1

heap size [A] « 9 -1

i.e. heap size [A] « 7

25

When i = 7, do exchange A [1] & A [7] and heap size
[A] «7-1
i.e. heap size [A] & 6

17 12025

i

94 LORDS Design & Analysis of Algorithmg pundamenta! Algorithmic Arategisy TR g %
— When | = 6, do @xchanys A1 ar RG] m1ed by sz ihg e 5 . :

We call MAX.HEAPIFY (A, 1) Lo, hoap slze [A] « 4 :

1

When i = 6, do exchange A [1] <> A [6] and heap size [A] « 6 - 1
i.e. heap size [A] «+ §

13|17| 20| 25

R

LowDd Design & Analys's of Algorithmg
et

96 [Al 2

o
o A [3] and heap SiZ€

When i = 3, do exchange A M
1

2 R
OO,

Again call MAX-HEAPIFY (A, 1)
1

O
2

When i = 2, do exchange A [1] <> A [2] and heap size [A] « 1
(4 |

Thus, sorted list is

2|(4|5|7|8]|13[17|20|25

Q 118. Using binary search algoriti\m,-ﬁnd the number of comparisons required
to find key value a the given list.
-15,-6,0,7,9,23,54,82,101,112,125,131,142,151

(PTU, May 2014)
Ans.

[-s[s] o7 s] 23]54]ez|101|112|125]131|142[15_1_|
0 1t 2 3 4 5 6 7 8 9 10 11 12 13
We want to search 9, then in first pass
Middle = (0+13)/2 =6

I;;slfl°|7|9|23l54|82|101|112|125|131|142E
234561‘78910111_213

Middle

S i e = i A S s SR s o . i

S .

Fundamental Algorithmic Strategles

9 is less than the middle element, then process is repleated in st haif.
Middle = (0+5)/2 = 2

Eal NEEED l,:[s:[a:\s:ﬂﬁ:h‘z:"aa\juz\u\\

97

1" 12 13

Middle
3+5
2

l‘:’l"fl 2 | : [[2:[5:[52[101\112‘125]131\142 151 |

7 8 1] 10 " 12 13

Now middle =

Middie
Now the position is found that is 4 and value is found i.e. 9.

Q 129. Explain job sequencing with deadlines with a suitable example.

Ans. Job sequencing with deagllines : We are given a set of 'n’ jobs. Associated with
each job there is a integer deadline di > 0 and a profit pi > 0. For any job | the profit pl is
earned if and only it the job is completed by its deadline. To complete a job one has to
process the job on a machine for one unit of time. Only one machine is available for processing
the jobs. A feasible solution for the problem will be a subset 'j' of jobs such that each job in this
subset can be completed by its deadline. The value of a feasible solution ‘J' is the sine of the
profits of the jobs in Y|'. An optimal solution is a feasible solution with maximum value.

The problem involves identification of a subset of jobs which can be completed by its
deadline. Therefore the problem suites the subset methodology and can be solved by the
greedy method.

Example : Obtain the optimal sequence for the tollowing jobs.

JiJ2 J2 M4
(P1, P2, P3,P4) = (100,10, 15, 27)
“(d1, d2, d3, d4) =2, 1,2, 1

n=4
Feasible solution Processing Sequence Value
n
(1, 2) 2, 1) 100 + 10 =110
(1, 3) (1,3)or (3, 1) 100 + 15 = 115
(1, 4) (4, 1) 100 + 27 = 127
(2, 3) (2, 3) 10+15=25
3. 4) (4, 3) 15 +27 = 42
(1) (1) 100 :
(2) (2) 10
(3) (3) 15
(4) (4) 27

¥ oL

LORD Design & Analysis of Algorithy,
98

" : ; jobs 1 and 4 are procesgg
In this example solution ‘3" is the optimal. In this s:'duit:?h?Zriier ja followed by j1. Th:
and the value is 127. These jobs must o fhm"c:s: And the processing of job 1 beging g
process of job 4 begins at time 0 and ends aLTME ' 1 L oy with in their deadlines. The
time 1 and ends at time 2. Therefore :':‘n:: g:s to be selected into the solution is accordip,
mmhp? :';mmndx:de is that which increases Zp the most, subject to the
constraint that the m;w:f:zside’ the jobs in decreasing order of profits,
;h:;.ue s;pposem gme:-yuse Dijkstra’s greedy, single source 3":’":;:"':":: ::9";'""“
r the algo ork a
on u;mﬁvded graph. What contraint must we have fo g (PTU, Dec. 201!19(;
Ans. Dikstra algorithm will work fine under these constraints.
2;&,; N = 5 and the vertices are 1 (the source), 2, 3, 4 and 5 the list (2, 3, 4], [2, 3, 4,
5], 2. 3. 4, 5], [3, 4, 5]) means that for step 2 only vertices 2, 3 and 4 can be visited and so
M_Shrtig from vertex 1 we can get to 2. (Let’s suppose distance d = 2), 3 (d=7)andy
(d = 11) — Current valve of distance is [0, 2, 7, 11, N/A] Next, pick the vertex with the shortest
distance (veriex 2). We can get from it to 2 again (shouldn't be counted), 3 (d = 3),4 (d = 4)
or 5 (d = 9). We see, that we can get to the vertex 3 with distance 2 + 3 = 5 < 7, which is
shorter than 7, so update the value. The same is for the vertex 4 (2 + 4 = 6 < 11) — Current
values are [0, 2, 5, 6, 9]. :
Mark all the vertices we visited and follow the algorithm until all the vertices are selected.
Q 131. Suppose you were to drive from Delhi to Mumbai. Your gas tank, when
full, holds enough gas to travel m miles and you have a map that gives distances
between gas stations along the route. Let d1 < d2< < dn be the locations of all the
gas stations along the route where di is the distance from Delhi to gas station. You
can assume that the distance between neighbouring gas stations is at most m miles.
Your goal is to make as few gas stops as possible along the way. Give the most
efficient algorithin you can find a to determine at which gas stations you should stop
and prove that your strategy yields an optimal solution. Be sure to give the time
complexity of your algorithm as a function of n. (PTU, Dec. 2019)
Ans. The greedy algorithm we use is to go as far as possible before stopping for gas.
Let ¢, be the city with distance d; from St. Louis. Here is the pseudo-code.

last = 0

fori=1ton

if (d;, last) > m

s=s{fsg

last=1t)-

Clearly the above is an O(n) algorithm. We now prove it is correct.

Greedy Choice Property : Let S be an optimal solution. Suppose that its sequence of
Stops is sq; 8, : : : ; 8, where 8 is to stop corresponding to distance t;. Suppose that g is the
la‘st stop made by the above greedy algorithm. We now show that there is an optimal solution
with last stop at g. If 5, = g then S is such a solution. Now suppose that 8,6 = g. Since the
greedy algorithm stops at the latest possible city then it follows that s, is before g. We now

Fundamental Algorithmic Strategies

99
argue that S = hg; s2; s3; : : : : ;sk | is an optimal solution. First note that |Sj = iSi. Second, we
argue that S is legal (i.e. you never run out of gas). By definition of the greedy choice you'can

reach g. Finally, since S is optimal and the distance between g and 82 i3 No more than the
distance between s, and s,, there is enough gas to get from g to s,. The rest of S is like S and
thus legal.

Optimal Substructure Property : Let P be the original problem with an optimal solution
S. Then after stopping at the station g at distance d, the subproblem P that remains is given

by di,q: 1 11 dy (i.e. you start at the current city instead of St. Louis).

Let S be an optimal solution to P. Since, cost (S) = cost (S) + 1, clearly an optimal
solution to P include within it an optical solution to P. .

Q 132. Give the solution for knapsack with Branch and Bound. The Capacity of
knapsack is m = 12. There are 5 Objects with profit (p1, p2, p3, p4, p5) = (10, 15, 6, 8, 4)
and weights (w;, w,, w3, wy, ws) = (4, 6, 3, 4, 2). (PTU, Dec. 2019)

’ Ans. Step 1 : (To find profittweight ratio)

pi/wli=10/2=5

p2/w2 = 5/3 = 1.67

p3/w3 =15/5=3

pa/wa = 7/7 =1

pS/W5 = 6/1 = 6

p6/w6 = 18/4 = 4.5

p7/w7 =31 =3

Setp 2 : (Arrange this profit/weight ratio in non-increasing order as n values) Since the
highest profit/weight ratio is 6. This is p5/w5, so 1st value is 5. Second highest profitweight

ratio is 5. That is p1/w1, so 2nd value is 1. Similarly, calculate such n values and arrange
them in non-increasing order.

Order =(5,1,6,3, 7,2, 4)

Step 3 : (To find optimal solution usingm = 15 & n = 7)
Consider x5 = 1, profit=6

Then consider x 1 = 1, profit = 10

So weight uptinow=1+2=3

Now x6 = 1, profit= 18

So total profit = 16 + 18 = 34

And weight uptinow=3+4=7

Now x3 = 1, profit = 15

So total profit = 34 + 15 = 49

And weight uptilnow =7 + 5 =12

Now x7 = 1, profit=3

So total profit = 49 + 3 = 52

And weight uptil now =12 + 1 =13

Since m = 15 so we require only 2 units more. Therefore x2 = 2/3
So total profit=52 + 5 x 2/3 = 52 + 3.33 = 55.3

And weight uptil now = 13+ 3x 2/3= 15

Thus, the optimal solution that gives maximum profit is,
(1,2/3,1,0,1,1, 1)

03D Design & Analysis of Algorith,
d the given °'em.,n

fin
binary search to

100
t appllcablo.

rsi
Q 133. Write a program for recu
within array. For what data binary search is no

Ans. # include <stdio.h> .) _
int binary search (intarrf], int, int r, int x)

{
If(r>=1)

{
intm=1+(r—1)72;

If (arr [mid] = = x) return mid;

if (arr [mid] > x) return binary searc
return binary search (arr, mid + 1, r, x);

}

return — 1;

)

int + main (void)

{

intarr[] = {2, 3, 4, 10, 40}

int n = size of (arr)/size of (arr [0]);

h (arr, 1, mid =1 X);

intx =10; ‘

int result = binary search (arr, 0, n—1, x);

(result = = —1) ? printf (“element is not present in array”).
}

rgtum 0; printf (“element is present at index % d”, result);
Binary search is not possible in linked list data structure if the list is not sorted and any

andom element in it can not be accessed in constant time.

Qaa

Chapter

8 Graph and Tree Algorithms

Traversal algorithms : Depth First Search (DFS) and Breadth First Search (BFS); Shortest
path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting,

Network Flow Algorithm.
[POINTS TO REMEMBER 2

When the search necessarily involves the examination of every vertex in the object

_being searched it is called a traversal.
There are two techniques for traversals in graph. These are :

2.
(i) Breadth first search
(ii) Depth first search]
3. Topological sort is an ordering of the vertices in a directed acyclic graph (DAG), such
that : if there is a path from u to v, then u appears after u in the ordering.
4. Dijkstra's algorithm finds the length of an optimal path between two vertices in a graph.
5. - A subgraph T of a undirected graph G = (V,E) is a spanning tree of G if it is a tree and
contain every vertex of G.)
6. A minimum spanning tree is a subgraph of gp undirected weighted graph G, such that:

(i) Itis atree (i.e. Itis acyclic) -
(ii) It cover all the vertices V. It contains |V|-1 edges.

QUESTION-ANSWERS

Q 1. Define Traversal.
Ans. When the search necessarily involves the examination of every vertex in the object

being searched it is called a traversal.
Q 2. List out the techniques for traversals in graph.

Ans. 1. Breadth first search

2. Depth first search
Q 3. Give a suitable example and explain the breadth first search (BFS).

(PTU, Dec. 2016, 2015 ; May 2019, 2015, 2014)
Ans. Breadth First Search (BFS) : Breadtn-first-search (BFS) is a general technique
for traversing a graph. A breadth first search traversal of a graph G.

Q Visit all the vertices and edges of G.
' 101

(PTU, Dec. 2018)

LORDD Design & Analysis of Algorithmg

102 Graph and Tree Algorithms

103

Q Determines whether G is connected.
Q Compute the connected component of G.

Q Compute a spanning forest of G.
Breadth first search on a graph with n vertices and m edges takes O(n + m) time.

BFS can be further extended to solve other graph problems.)

O Find and report a path with the minimum number of edges between 2 given vertices,

Q Find a simple cycle, if there is one.

Breadth first search is obtained from Basic Search by processing edges using a data
structure called a queue. It processes the vertices in the graph in the order of their shortest
distance from the vertex s (the start vertex).

BFS Algorithm : Given (undirected or directed) graph G = (V,E) and nodes s € V. _ 1.)
BFS(s) ; 2. 12, 3]
Mark all vertices as unvisited ’ 3. [3,4,5]

Initialize search tree T to be empty
Mark vertex s as visited
Set Q to be the empty queue

e oo
While Q is non-empty do '
u = deq(Q)

for each vertex v e Adij(u) ' §
if v is not visited then

add edge(u, v)to T

Mark v as visited and enq(v)

i (1]
b | 2. [2,9]
' 3. [3,4,5]
f 4. [4,5,7,8)

| O—E O O
| 1. 1)
~= 2. 2,3
= 3. [3,4,5)
[1] © ' 4. [4,5,7,8)
2. 23 5. 16,7, 8]

10
104 5

1.
2. [2 3

3. [3,4,5
4. [4,5,7, 8]
5. [5,7. 8]
6. [7.8,6]

BFS tree is the set of black edges

Q 4. Write down the applications of breadth first search and depth first search.

(PTU, Dec. 2017 ; May 2019, 2018, 2016)

& Ans. BFS : Using the template method pattern, we can specialize the BFS traversal of
. a graph G to solve the following problems in O(n + m) time.

2. 12 3] : g ; 6] O Compute the connected components of G.
" % Rt O Compute a spanning forest of G.
3. [3.4.5] 7.18.6 Q Find a simple cycle in G, or report that G is a forest.
4. [4,5,7,8] QO Given two vertices of G find a path in G between them with the minimum number of
edges or report that no such path exists.
DFS :
Q To find a path from a vertex S to a vertex v.
Q To find the length of such a path.
Q To construct a DFS tree/forest from a graph.
Q Topological sort : Using depth-first search to perform topological sort of a directed
acyclic graph.
Q Strongly connected components : Decomposing a directed graph into a strongly
- connected components using two depth-first searches.
1. 1] 5. (5,7, 8 Q 5. Give a suitable example and explain the depth first search (DFS).
2. [2, 3 6. [7, 8, 6) b (PTU, May 2017 ; Dec. 2016)
3. [3,4,5) 7. (8, 6] Ans. DFS : Similar to depth-first traversal of a binary tree.
4, [4,5,7,8] 8. [6)

Q Choose a starting vertex.
Q Do a depth-first search on each adjacent vertex.

PESES,

108

LO3IDD Design & Analysis of Algorithmsg

Pseudo-code for depth-first search
DFS : Mark vertex as visited

for each adjacent vertex

if unvisited

do a depth-first search on adjacent vertex.

Graph and Tree Algorithms

- [

Graphand Tree Algorithms 109
Qe,Expldntopologlcalsoﬂwﬂhthohdpdumw
(PTU, May 2013 ; Dec. 2014)
Ans. Topological Sort : An ordering of the vertices in a direcled acyclic graph (DAG)
g m:;c;re is a path from u to v, then v appears after u in the ordering-
Types of graphs : .
1. The graphs should be directed, otherwise for any edge (u, v) there would be a path
from u to v and also from v to u and hence they cannot be ordered.
2. The graph should be acyclic, otherwise for any two vertices u and v on a cyde u
would preceede v and v would preceede u.

The ordering may not be unique

@ W

ABDEFCG ABDEFCG @

V1, V2, V3, V4 and V1, V3, V2, V4 are legal orderings.

Here, degree of a vertex U is the number of edges (U, V) i.e. outgoing edges.

Indegree of a vertex U is the number of edges (V, U) i.e. incoming edges.

The algorithm for topological sort uses “indegrees” of vertices :

1. Compute the indegrees of all vertices.

2. Find a vertex U with indegree 0 and store it in the ordering. If there is no such vertex
then there is a cycle and the vertices cannot be ordered. Stop.

3. Remove U and all its edges (U, V) from the graph.

4. Update the indegrees of the remaining vertices.

5. Repeat step 2 through 4 while there are vertices to be processed.

Example :

1. Firstly, compute the indegrees

(8)) , V1:0
‘ V2:1
O—®) (© ' . V3:2.
ABDEFCG V4:2
V5:2

2. Find a vertex with indegree 0 : V1
3. Now remove V1 and update the indegrees :
Sorted : V1

LO3DD Design & Analysis of Algorithmg

. Graph and Tree Algorithms

vertices and |£] is the number of edges.

Q 7. Explain Dijkstra’s algorithm.

Ans. Dijicstra’s Algorithm : Dijkstra’s aigorithm solves the single-source shortest-path
problem of finding shortest paths from a given vertex (the source) to all the other vertices of
a weighied graph or digraph. It works as prim’s algorithm but compares path lengths rather
Ima@em.WsWMMamedsomnfwagraphwimMn-

Q 8. Explain Dijkstra’s aigorithm with the help of example. What is its time
complexity. (PTU, May 2017 ; Dec. 2017, 2013)

Ans. Dijkstra’s Algorithm : Dijkstra’s algorithm finds the length of an optimal path |
between two vertices in a graph. Optimal can mean shortest or cheapest or fastest or optimal |
in some olher sense : it depends on how you choose 10 label the edges of the graph. One can |
find the shoriest path from a given source to all points in a graph in the same time, hence this |

. .pwob is sometimes called the single source shorlest paths problem. i
Gl -

110
Remove edges : (V1, V2). (V1, V3) and (V1. V4) Dijkstra’s Algorithm — Relax ——
Updated indegrees Relax(vertex u, vertex v, weight w)
V2:0 if d[v] > d[u] + w(u, v) then
V3:1 d[v] « d[u] + w(u, v)
V4: 1= plv] «u
V5:2 Dijkstra’s aigorithm - idea
L 1 Indegree ’ Q Initialize wi[v] = > and wi(s] = 0
[Sorted > | V1 | V1,V2 | Vi,V2,Va | V1,V2, Va, V3| VI,V2Vav3vs =S S e P il
1 el epeatedly delete node v from PQ that has min wifv].
— addvto S
V2 l 1 0 foreachv —-w, relax v-w
w .l 2 1 1 0] Dijkstra’s Algorithm — SSSP - Dijkstra
| va | 2 1 0 SSSP - Dijkstra(graph (G, w), vertex S)
l v5 I 2 2 1 0 0 IniﬁalizeSingleSource(G. S)
S«¢
Complexily of this aigorithm : O(]V]2), |V] i.e. the number of vertices. Q « V[G]
To find a vertex of indegrees 0 we scan all the vertices i.e., |V| operations. While Q = 0 do
Thus, we do this for all vertices i.e, [V|]2 u « ExtractMin(Q)
" Afier the inifial scanning to find a vertex of degree 0, we need to scan only those vertices S « SuU{u}
whose updated indegrees have become equal fo 0. for V e Adj[u] do
1. Store all verfices with indegree 0 in a queue. Relax(u, v, w)
2. Get a veriex U and place it in the sorted sequence i.e., array or another queue. InitializeSingleSource(graph G, veriex s)
3. For all edges (U, V) update the indegree of V, and put U in the queue if the updated for v € V[G] do
indegree is 0. i d[v] «
4. Perform step 2 and 3 while the queue is not empty. | p[v] « 0
Complexity : The number of operations is O([E| + |V]), where |V] is the number of l d[s] « 0
f Example :
)

LO3D> Design & Analysis of Algorithms . Graph and Tree Algorithms 13
for (u, v) € E(G) do
Relax(u, v, w)
for (u, v) € E(G) do
if d[v] > d[u] + w(u, v) then
return false

return true.
Example of Bellman-Ford Algorithm

112

Time complexity : Time complexity of dijkaska’s algorithm is O [E Log V]
Q 9. Expiain Beliman-Ford algorithm with the help of suitable example.
(PTU, May 2015)

Ans. idea in Bellman-Ford algorithm :
O Repeat the following |V| — 1 times :
refax each edge in E.
O Test if there is any negative weight cycle by
checking if dfv] > d{u] + w(u, v) for each edge (u, v).
Beliman-Ford Algorithm — SSSP-BellmanFord
888P-BelimanFord(graph (G, w),Vertex s) .
InitializeSingleSource(G, 8)
forie 11to|V[G]-1]do

LOIDY Design & Analysis of Algorithms
114

PTU, Dec. 2015 ; May 2015, 2014)
spanning trees? (PTU, ’ _ :
:r:'sm::g Trees r:gA subgraph T of a undirected graph G = (V, E) is a spanning
wree of G if it is a tree and contain every vertex of G.
Example :

Spanning tree 2

Spanning tree 3
0 11. What is minimum spanning tree (MST) and its applications?

(PTU, Dec. 2018)
Ans. Minimum spanning tree : A minimum spanning tree is a subgraph of an undirected

weighted graph G, such that :
Qd Itis atree (i.e., it is acyclic)
3 1t covers all the vertices V.
It contains |V| — 1 edges.

QO The total cost associated with tree edges is the minimum among all possible spanning
Yrees. '

J Not necessarily unique.

Applications of MST :
1. Any time you want to visit all vertices in a graph at minimum cost (e.g., wire routing
on printed circuit boards, sewer pipe layout, road planning....) ’

2. Internet cgntent distribution

SS8$, also a hot research topic. Publisher produces web pages, content distribution
network replicates web pages to many locations so consumers can access at higher

speed. Minimum spanning tree may not be good enough! i.e., content distribution

on minimum cost tree may take a long time!
3.

Provides a heuristic for traveling salesman problems. The optimum traveling
salesman tour is at most twice the length of the minimum spanning ftree.

Q 12. Explain Kruskal’'s algorithm with the help of example.

Ans. Kruskal's algorithm :

1. Arrange all edges in a list (L) in non-decreasing order.

2. Select edges from L, and include that in set T, avoid cycle.

3. Repeat 3 until T becomes a tree that cover all vertices.

Graph and Tree Algorithms

Kruskal's algorithm

(1,2 12
{3, 4} 12
{1, 8) 13
(4, 5} 13
{2, 7} 14
{3, 6} 14
{7. 8} 14
{5, 6} 14
{5, 8} 15
®7n | 15
{1, 4} 16
{2, 3} 16
1,2} 12
{3, 4} 12
{1, 8} 13
{4, 5} 13
{2, 7} 14
{3, 6} 14
{7, 8} 14
{5, 6} 14
{5, 8} 15
{6, 7} 15
{1, 4} 16
{2, 3} 16
{1, 2} 12
{3,4) | 12
{1, 8} 13
{4, 5) 13
2.7} 14
{3, 6) 14
{7, 8} 14
{5, 6) 14
{5, 8} 15
6, 7} 15
{1, 4) 16
2, 3) 16

115
[0)
& |2 |
a8 | 13 |
| 4. 5) 13 |
2.7 14 |
3.6 | 14 |
7.8 | 14 |
{5, 6} 14 |
{5. 8} 15 |
{6, 7} 15 |
{1, 4) 16
{2, 3) 16
1,2} 12
3,4y | 12
{1, 8} 13
{4, 5} 13
2.7} 14
{3, 6} 14
{7, 8} 14
(5.6} | 14
(5, 8) 15
6. 7} 15
{1, 4} 16
2.3.] 16
{1.2} 12
3.4 | 12
{1, 8} 13
{4, 5} 13
2,7} 14
{3, 6} 14
{7, 8) 14
{5, 6) 14
{5, 8} 15
{6. 7} 15
{1, 4} 16
{2, 3} 16

ign & Analysis of Algorith
LO3DS Desig Algorithms

L. Graph and Tree Algorithms 117
{1, 2} 12 Q 13. Explain Prim’s algorithm with the help of example. (PTU, May 2014)
s {3, 4) 12 Ans. Prim’s algorithm :
- L {1,8) | 13 1. Start from any arbitrary vertex. '
5 4' 5} 13 2. Find the edge that has minimum weight from all known vertices.
= 2' 7} 14 3. Stop when the tree covers all vertices.
14 y -
14 {3, 6} 14] Prim’s
14 {7, 8) 14
14 {5.6) | 14
15 {5, 8} 15
15 67 [15
16 1.4 | 16
18 2.3 | 16
Minimum Spanning Tree
Skip ’
ip {7,8} t 5. 6) [14 ks
;S"’(;?dfzyagleo §5 8}} 15 Jteration 3. U = {1,3,6} lteration 4. U = {1,3,6,4} Iteration 1. U = {1,3,6,4.2)
6, 7) |15
1,4} |16
{2, 3} |16
{1,2} |12
3,4)[12
{1,8)} (13 |
! ' inimum spanning tree of a given
:.:; : : Q 14. Apply Kruskal's algorithm to find a m N, e, 201
3' 6} |14 graph.
{7, 8} | 14 [Skip
Skip (5.6} to (5.6) | 14 | Skip
avold cycle (5' 8’ 15
6, 7} |15
1, 4) |16
t
— Ans. 1. We first select an edeg with minimum weigh

ik LO3D Design & Analysis of Algorithms Graph and Tree Algorithms 1
rithms Graph 2 9
1 Q 16. What is minimum coot. spanning tree algorithm? (PTU, May 2006)
o o Ans. Let G = (V, E) be an undirected connected graph. A sub-graph t = (V, E") of G ig
Total Cost = 1 a spanning tree of G if and only if tis a tree.
2 Then we select the next minimum weighted edge. It Is not necessary that selected G 17, "What s SIepii-liet Swarels Wgormtine

(PTU, May 2006)
Ans. Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree

. structure, or graph. One starts at the root (selecting some node as the root in the graph case)
o o and explores as far as possible along each branch before backtracking.

Q 18. What is Eulerian cycle in a graph? i (PTU, Dec. 2006)
O—0O |

Ans. In graph theory, an Eulerian trail is a trail in a graph which visits every edge
Total Cost = 3 v _exactly once. Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail which starts
ini ; ; - ‘ and ends on the same vertex. They were first discussed by Leonhard Euler while solving the
3. Then we select next minimum weight for an unvisited vertice

famous Seven Bridges of Konigsberg problem in 1736. Mathematically the problem can be
stated like this :

edge is adjacent.

Given the graph on the right, is it possible to construct a path (or a cycle, i.e. a path
starting and ending of the same vertex) which visits each edge exactly once.

Q 19. What are row major and column major ordering? (PTU, May 2009)

. Ans. n computing, row-major order and column-major order describe methods for

storing multidimensional arrays in linear memory. Following standard matrix notation, rows

are identified by the first index of a two-dimensional array and columns by the second index.

P—— ‘ Array layout i.s critigal for correctly passing arrays between programs written in different
S s B . N languages. It is also |mponant‘ for performance when traversing an array because accessing
B ks oy . e spanning tree should be connected one. i array elements that are contiguous in memory is usually faster than accessing elements
N ge w mlnlmym weight. | which are not, due to caching. Row-major order is used in C ; column-major order is used in

us we get a minimum spanning tree with Kruskal’s algorithm b

Fortran and MATLAB.

Q 20. Describe a path in an undirected path. (PTU, Dec. 2010, 2007)

Ans. Sequence of vertices, such that there is an edge from each vertex to the next in

sequence, is called path. First vertex is the path is called the start vertex ; the last vertex in

“the path is called the end vertex. If start and end vertices are the same, path is called cycle.

Path is called simple, if it includes every vertex only once. Cycle is called simple, if it includes
every vertex, except start one, only once.

Q 21, List the uses of graph coloring. (PTU, Dec. 2011)
Total Cost = 12 Ans. Graph coloring is an arbitrary assignment of labels (colors) to objects within graph.
Q15. Letn=5(P,, Py, Ps) = (18, 14, 12, 5, 1) and (d, d ds) = (2, 2, 1 ’ Such objects can be vertices, edges, faces or a mixture of these. A graph coloring is distinct
Find optimai solution. ' t o e Bl =4 2, 1,3, 3). from a graph labeling in that in the former, the same label may be used more than once.
i (PTU, Dec. 2006)

The applications of graph coloring found in following areas :
1. Scheduling
Time —» 02 2. Register allocation in compilers
Profit = (P, + P y 3. Frequency assignment in mobile radios
i =1+ P+ P)=18+1445=37 4. Pattern matchin
Then optimal schedule (1, 2, 4) wiith profit 37. 5. Sudoku g

- T T

LO3D) Design & Analysis of Algorithms

= (PTU, May 2008)
Q 22, Define Kruskal's algorithm.

i h theory that finds a minimum spanning
Ane. Kruskal's sigorlih & e:‘n ?ﬁ;rl:::‘;?a:\r;ﬂ:aﬁ‘:\ds a subset of‘the edges.that ff:)rms a
for a connected weighied O'8P ight of all the edges in the tree is minimized.
tree fo) vertex, where the total weig : et
i o ted, then it finds a minimum spanning forest (a ning
L nmecc‘:::ec::n;;onenl). Kruskal's algorithm is an example of a greedy algorithm.
tree for each conn
Descrlpgo: f;rast F (a set of trees), where each vertex in the graph is a separate tree
g z:::te a set S containing all the edges in .the graph
0O while S is nonempty all F is not yet sp.anmng
e remove an edge with minimum weight from S _ -
e if that edge connects two different trees, then add it to the forest, combining two
“trees into a single tree otherwise discard that edge.

At the termination of the algorithm, the forest has only one component and forms a
minimum spanning tree of the graph.

Q 23. What are Prim’s and Kruskal’s algorithms for minimum cost spanning tree?

' (PTU, May 2011)

Ans. Prim’s algorithm is a greedy algorithm that finds a minimum spanning tree for a
connected weighted undirected graph. This means it finds a subset of the edges that forms a
tree that includes every vertex, where the total weight of all the edges in the tree is minimized.
Description : The only spanning tree of the empty graph is again the empty graph.

The following description assumes that this special case is handled separately.

The algorithm. continuously increase the size of a tree, one edge at a time, starting with

a tree consisting of a single vertex, until it spans all vertices. : .
O Input : A non empty connected weighted graph with vertics V and edges E.

U Initialize : V,,,, = {x], where x is an arbitrary node (starting point) from V, E, ., = { }
U Repeat until V,,, =V :

> Choose an edge (u, v) with minimal weight such that us is in V,q,, and v is not.
> Add V to Vi, and (uy, v) t0 E,,,,,

Output : V., and E,,,, describe a minimal spanning tree.

Kruskal’s algorithm is a greedy algorithm that finds a minimum spanning tree for a

connected weighted graph. This mean it finds a subset of the edges that forms a tree that
includes every vertex, where the total we

is not connected, then it finds a minimu
Description :

Q Create a forest F

(a set of trees), where each vertex in the graph is a separate tree
Q Create a set

S containing all the edges in the graph
O While S in non empty and F is not yet spanning
> 'emove an edge with minimum weight from S
> fthat edge connects two different trees, then add it to t
trees into a single tree

> other wige discard th
. at edge.
At the termination of al -

Q

ight of all the edges in the tree is minimized. If graph
m spanning forest.

he forest, combining two

gorithm, the forest has only one component and forms a minimum

~ Graph and Tree Algorithms
B

~ gpanning tree of the graph.

124

Q 24. Define a minimum spanning tree. Write Prim’s algorithm to find minimum
spanning tree.

, (PTU, Dec. 2008)
Ans. A minimum spanning tree of a weighted connecied graph is its spanning tree of
. the smallest weight, where the weight of a tree is defined as the sum of the weights on all its
| edges.

e Prime’s algorithm to find minimum spanning tree :

Procedure prime (G, W, S)

The above procedure subalgorithm finds the minimum spanning tree of a given ‘g’. The

3 \ procedure takes the advantages of priority queue data structure
~ ‘pre’ and ‘key’.

. It uses three armay ‘color’,
Step 1.

Initialization
Fora«V, V, ..VjaeV

{
Set key [a] « + w
Set color [a] « white
} End of loop

Start at root vertex
Set key [S] « 0
Set pre [S] « Null

Set Q « call to prio queues (V)
put vertices in Q

Step 2.

Step 3. Loop, searched until all vertices in MST

While (non-empty) (Q))
{

Set a « Extract_Minimum (Q) vertex with light edge
start loop 2

ForV «Vv,, Vv,
{

It (color [V] = white) & & (W (a, V) < key [V]) then
{

Set key [V] « W (a, V)

new lighter edge out of V

Call to decrease key (Q, V, key [V])

Set pre [V] « a

End of loop 2

Set color [a] « black

End of loop 1

..... Adj[a] V € Adj [a]

return at the point of call
return.

LO3D> Design & Analysis of Algorithms

122 e henn=dandm=3.

Q 25. Draw the state space tree for ™ i (PTU, Dec. 2011)

n=3andm=3

o for m colouring with

Ans. State space tre

ite Kruskal’s algorithm to find minimum
(PTU, May 2010, 2009)
" Ans. A minimum spanning tree : A connected, undirected graph, a spanning tree of
at graph is a subgraph that is a tree and connects all the vertices together. A single graph
\n have many different spanning trees. We can also assign a weight to each edge, which is
number representing how unfavourable it is, and use this to assign a weight to a spanning
)e by computing the sum of the weights of the edges in that spanning tree. A minimum
anning tree (MST) or minimum weight spanning tree is then a spanning tree with weight
is than or equal to the weight of every other spanning tree. More generally, any undirected
1ph (not necessarily connected) has a minimum spanning forest, which is a union of minimum
anning trees for its connected components. - _ .
Kruskal’s Algorithm : One idea given by J.B. Kruskal is the following. A minimum
inning tree T is built edge by edge. The edges are sorted in the non-decreasing order of
ir costs. At each stage, we choose the smallest unused edge that does not form a cycle
1 the already chosen edges. The algorithm Kruskal is described below.
Procedure Kruskal (G : graph) : »
{Finds a set T of edges of G = (V, E) which forms a minimum spanning tree of G.}
var T : set, u, : vertex ; i
begin
initialize T to be empty ;
while |T| < |V| -1 and |E| > 0 do
begin
choos_e edge (u, v) of the lowest weight in E ;
remove (u, v) from E ;
if edge (u, v) does not form a cycle with edges in T then

Q 26. Define a minimum spanning tree. Wr
panning tree.

Graph and Tree Algorithms
insert (u, v) into T —_— 123
end ;
if [T| < |V| =1 then write (‘n i ' ‘
0 5 ('no spanning tree) {G is not connected)

_ 'Kruskal’s algorithm is a greedy algorithm, since it make
decision at each stage. In general, this strategy does not
optimal, although it is locally optimal. -

s the locally optimal (j.e., greedy)
arantee that the result is globally

27. "
Q Explain quick-union and quick-find set algorithms. Give suitable examples

(PTU, May 2011)
S a set of items. A
has operations :

Ans. Disjoint Sets : Disjoint sets j
. : ts is a data structure which iti
. a
partition is a set of sets such that each item is in one and only on: sr:t"ol?
makeset (x) : makes a set from a single item '
find (x) : finds the set that x belongs to
\l;vnlon (x, y) : makes the union of the sets containing x and y
e can assume that the items ar. i
an € represented by integers, which can be the index into
There i i
there ir; ‘t’w.oug;z;;u:;:‘ m(;p:!ementatlon for disjoint sets, using linked lists or using trees
2 ed lists to represent the sets, and '
el i .) an array, called esentati
:Lr:}ge\:;ri\;c?hls mc:exed py the lt'em number and the value give the set zvame (sr::ﬁl;st 'ntegehve
e set). rThe operation makeset is obvious, update the representative ' ;
make the single element link list. The cost is @) e

. ! l . .

Th i ion i i -
€ operation union is more-expensive. Join the two link list (easy enough) but the

o i i
epresentative arrays must be update. The cost is linear in the set size

- For sequence of n random unions the cost is @ (n2). We can do better if the t

of the representative array is the | s
: arger set, then algorithm o

; nly needs

: sprese_ntatlve array for the smaller array. This is called union by siz: Then tt:: Upda_te o

g n) because the set size doubles after each union. The cost of n — 1 i ok ('n

by iy v unions and m finds is

Intege?'u“:: Union : The imp.lementation uses trees of the items to represent the sets. Th
In the root of the tree is the set name. The links of the tree point from the childr.en t:

the parent note this i i
is not a binary t i int i : z 4
" ry tree and the links point in the opposite direction of the most

The operation makeset is obvious, just make a single node tree. The cost is ®(1). The

0 .
Peration union links the root of one tree to the root of the other tree. The cost is @)

_— The operation find requires traversing up the tree and cost ®(h), where h is the height
€ tree. The height could be on the order of the set size. To control the cost, the union

—vy FOEEC AR D

LOIDY Design & Analysis of Algorithms
124

the larger tree. This is
ion the sub tree of . el
i union operation ! lly, this requires storing the
should meke the smaler e |?o:1h:y rank (by tree height). Nat:r:i hr!\t of the tree is logarithm
union by size (by set size) of U'Lsing union by size or rank ‘r;‘ehe cgst St PR sl o
tree size or height b 'he “:?t.other words the tree/set size). The ¢
in ‘
: Lt ' ion makes eve
:ut:s‘:;eo (n + mlog n). by using path compression. Path com;:lr::.(;:oof i g
n We can do even b;nn:r"n{ed it the root directly. Then a seq
ncounter during a -
-t eﬁndsri's only slightly more R — h in fig 1. Find a minimum spanning
T 28, Conidrthe undecid weied gap (PTU, Dec. 2013)
= f:; graph using Kruskal's algorithm.
tree for :

C-D-1
Ans. A-B->2
- A-C->3
E-H->3
" 4 7 8 B-D— 4
At E-F—4
-D-E->5
. F-G->5
D-F->6
F-H->7
G-H->8
Step2.A-B 2

Step1.C-D - 1

H 8 E = A
3 2 4 5
7 8
4
7 8 A D
NP |
56 . o0

*no shortest path.

- .V ER W

Graph and Tree Algorithms

125
Step 5. SkipB-D - 4 1o avoid cycle Step8.E-F _, 4

Q29. What is difference betwee Dijkstra and Beliman Ford algorithms for solving
single source shortest path problem?
Ans. Both Dijkstra and B

but the primary difference in the function of the two al
not handle negative edge weights. Bellman-

gorithm is that Dijks
negative weights. It must be

Ford's algorithm can hand
remembered, however, that i there is a

tra’s algorithm can
le some edges with
negative cycle there is
-Q 30. What is difference between Prim’s and Kruskay’
minimum cost Spanning tree?

Ans. Prim's algorithm is for obtaining minimum s
vertices of already selected vertices. _

Kruskal's algorithm is for obtaining minimum Spanning tree but it is not hecessary to
choose adjacent vertices of already selected vertices.

The main difference between Prim's and kr
edge e to be connected to th

8 algorithm for finding
(PTU, Dec. 2019, 2017 ; May 2014)
Panning tree by selecting the adjacent

uskal's is that kruskal does not require the
@ evolving tree T. That means that T isn’t necessarily connected
at intermediate steps in kruskal's algorithm. So strictly speaking the T in Kruskal's algorithm is
a forest and not a tree. Kruskal's algorithm can also be- implemented easily in O(m log n)
time.

Q 'Both have the same o

utput i.e. minimum spanning tree.
Q Kruskal's begins with f

orest and merge into a tree.
Q Prim's always stays as a tree.

Q Unlike Kruskal's Prims doesn't need to see all of the graph at once. It can deal with

030> Design & Analysis of Algorithms
L
126 worry if adding an edge Wil create a

\ to '
it one piece at a time. It aiso doesn’ e h the nodes, and not the edges

s will ?
) : hm deals primarily Wi ad Node

- :‘:‘ ::?':rrnenoo pbetween a Live Node and De (PTU, Dec. 2014)
Q 31. What is

i have

. live node. hich is to be expanded
generated is called as @ enerated node, W
yet been ode is defined as 2 9
node : Dead N

ated.
ildren have been gener
further all of whose ¢h

" (PTU, May 2015)
for a graph. -
Q 32. State shortest path pmb:mth broblem s the problem of 'flndlng a path betwee.n
Ans. In graph theory. the shortes & the sum of the weigths ofits con§t|tuent ec?ges is
two vertices (or nodes) in 2 9’:2;;‘::“6@ be defined for graphs whether undirected, directed
. s t path
minimized. The shortes

ith suitable example.
t of graph coloring W
Q 33. Explain concept ©

jated to graph coloring.
main concepts are re
Ans. There are three

3j Face coloring (planar)

'/ ml . Vellex colo”ng 18 ﬂ'\e “'ost common gla h colorin lobelll he
1. m | . :
pfmn ", gve" n wb"sv ’"n a way o' color “g u'e vertices o' a glaph such that no two

adiacent vertices are colored using same color.

Blue

plack Blue

Edge coloring : An edge coloring assign a color to each edge 8o that no two incident
2. g

edges shase the same COMY.

3. Face coloring : A face coloring of a planar graph assigns a color to each face or

region 80 that no two faces that share a boundary ghare the same color.

number lor a graph G ls
omatic . The smallest number of colors needed 0 CO
cabd?:dwovmﬁc number, For example, the following can be colored minimum 3 colors.

= -
ff———loe)"

——

Graph and Tree Algorithms

127
Q 34. Explain transitive closure of a graph,

Ans. Given a directed graph, find out if a vertex | is reachable from another vertex 1 for
all vertex parts (i, j) in the given graph. Here reachable mean that there is a path from vertex
i to j. The reachability matrix is called transitive closure of a graph.

e.g. : Consider below graph

Transitive closure of above graph is

1 1 | 1
1 1 1 1

The graph is given in the form of adjacency matrix say graph [v] [v] where graph (i} [j) is
1. f there is an edge. from vertex i to vertex j or i is equal to j, otherwise graph (ij {j] is 0. Floyd
Warshall Algorithms can be used, we can calculate the distance matrix dist [v] [v] using Floyd
warshall, If dist (i] [j] is infinite, then j is not reachable from i, otherwise j is reachable and
value of dist [i] (j) will be less than V. Instead of directly using Floyd Warshall, we can optimize
it in terms of space and time, for this particular problem. Following are the optimizations :’

1. Instead of integer resultant matrix (dist (v] [v] in floyd warshall), we can create a

boolean reachability matrix reach (v} [v]. The value reach (i] j) will be i if j is reachable
from i, otherwise 0.

2. Instead of using arithmatic operations, we can use logical operations. For arthematic

operation '+, logical and ‘&&’ I8 used, and for min, logical or ‘||’ is used.

Q 35. What is advantage of binary search over linear search ? Also state |imitations
of binary search. (PTU, May 2017)

Ans. Binary search method is a method to search a specific data from a large volume
of data. In this method, data at the middle I8 checked, if it is found search is completed
otherwise that half is selected in which data can be found and this process continues till the
data is found e.g. as we do to find a word in a dictionary.

Advantages of binary search on linear search : A binary search runs in 0 (log n)
time, compared to linear search's O(n) time. What this means Is that the more elements are
present in the search array, the faster a binary search will be compared to a linear search, As
an example, given 100 elements, a binary search will discover the item using no more tnan 7

LoD Design & Analysis of Algorithms
128

i i 00 iterations, going t :
b e requu: rptl") ;ar s'::ch's 1000 maximum iterations. The
i »arations, compared to lin
requires only up to 10 itera)

rray, which means the
downside to binary search, however is, it only operates on @ sorted array
_sorted using some means. . s as ace
s r;llj:;::a:::gs:s of usi:g Binary search : The binary search ?Igonthm tywoerkof s et::
the middle element of list. This means that the list must be stored in st;:\; ofpthe bl an.d -
problem occur when inserting an array require move down t?etelem
i lements of the list.
case of deleting from an array moved up the e
Q 36. Explain Ford Fulkerson Algorithm for Maximum flow problel:. —
Ans. Given a graph which represents a flow network where every ec':lge as ssml{; - (t)y,
Also given two vertices source ‘s’ and sink '+’ in the graph, find the maximum po . w
from s to t with following constraints : -
(a) Flow on an edge doesn’t exceed the given capacity of the edge.
(b) Incoming, flow is equal to outgoing flow, for every vertex except s and t.
e.g. Consider the following graph from CLRS book.

o upto 1000 elements

The maximum possible flow in the above graph is 23.

1 = 3
- 19
1
12 4
2 1 .

Prerequisite : Max flow problem
Introduction

Ford-Fulkerson Algorithm : The following is simple idea of Ford-Fulkerson algorithm
1. Start with initial flow as 0.

2. While there is a augmenting path from source to sink
Add this path-flow to flow
3. Return Flow

Time Complexity : Time Complexity of the above algorithm is 0 (max — flow * e). We

)

Graph and Tree Algorithms

129
run a loop while there is an augmenting path. In worst case, we may add 1 unit fiow in every

jteration. Therefore the time complexity becomes 0 (max — flow * e).

How to Implement the above simple algorithms : Let us first define the concept of
Residual Graph. Which is n_eeded for understanding the implementation. Residual Graph is a
flow network is a graph which indicates additional possible flow. If there is a path from source
1o sink in residual graph, then it is possible to add flow. Every edge of a residual graph has a

. value called residual capacity which is equal to original capacity of the edge minus current

flow. Residual capacity is basically the current capacity of the edge. Residual capacity is 0 It
there is no edge between two vertices of residual graph. We can initialize the residual graph
as original graph as there is no initial flow and initially residual capacity is equal to original
capacity. To find an augmenting path, we can either do a BFS or DFS of the residual graph.
We have used BFS in below implementation. Using BFS, we can find out of there is a path
from source to sink. BFS also builds parent [] array. Using the parent [] array, we traverse
through the found path and find possible flow through this path by finding minimum residual
capacity along the path. We later add the found path flow to overall flow.

~ The important thing is we need to update residual capacities in the residual graph. We
subtract path flow from all edges along the path and we add path flow along the reverse

- edges. We need to add path flow along reverse edges because we may later need to send

flow in reverse direction.

Q 37. Define connected components.

Ans. A graph is said to be connected if at least one path exists
between every pair of vertices in the graph. Altemnatively, two vertices

(PTU, Dec. 2015)

are defined to be in the same connected component if there exists a (&) &)
path between them. Other words we can also say that If G is a
connected undirected graph, then we can visit all the vertices of the [¢) (D)

graph in the first call to BFS. The subgraph which we obtain after

traversing the graph using BFS represents the connected component
of the graph.

Connected Graph

Q 38. From a given adjacency list representation of a directed graph how do you
find the in degree and out degree of the vertices ? Analyse the algorithm.

(PTU, Dec. 2015

Ans.
1 2] 4] |
2315
3 6] 3511
4 » 2
5 (4
6 6
Directed graph Adjacency-List representation of

a Directed graph

LU UGaIYl & nnaiy 315 vi AIYUTiThipg
LR 1Y) ‘

The in-degree of a vertex is the number of edges entering it. The out-degree of 4
vertex is the number of edges leaving it.

" Q 39. Using Dijkstra’s algorithm find the shortest path from A to D for the 1‘oII¢:m,|“g
graph.

Ans. Refer to Q.No. 8
Example :

Graph and Tree Algorithms

-Q 40 Differentiate between graph and a tree. (PTU, May 2016)
Ans. The graph and the tree both are the collection of nodes and the edges but the
main difference between the two is that in tree there is an unique node called as root from
which the subtrees arise whereas in the graph no such root node is there.
Q 41. Extend the Dijkastra's algorithm to find All-pairs-shortest-path (ASSP)
problem. (PTU, May 2018)
Ans.Given a directed graph G = (V, E) where each edge (V. W) has a non negatlve‘cost
C [V, W] for all pairs of vertices (V, W) find the cost of the lowest cost path from V to W.
A generaﬁzatibn of the single source shortest path problem.

LORDD Dasign & Analysis of Algorllhmj

’ s 'T'—ﬁm“-'w." 5 node among all tha modes In the graph,
2ach pair of vertices. the cost of the path.
- the path itsell and not just the
e O he appllcations of BST ? (PTU, Dao. 2019)
Qa Soll balancing BST 1 used to maintain sorted stream of data,
Ans, 1, A - BST is used to implemant double anded priority queue.
2 A st ba that M [T, 18 an array containing a Min-Heap, Glve pseudeode
for mﬁm“ ‘Tnpo”mmt Min [H,n) that remain the smalling ol:monl from tiho ho;p M of
lue. Analyse the time complexity of your algorithm. Explain
size n and retuma ita VA (PTU, Deo. 2019)

algorithm,
e Ans. Procedure ! Min-Heapity (v, 1)

Input 2 v : an array of alements | { an Index array.
Output : v : modified such that element | roola a min-heap
| « left (i),
r < Right (i)
I < |viand v [l < v [i] then
min « |
alse
min « i;
Ifr=|vlandy [r] < v [min] then
min « ;
If min « i then
Exchange v[i) and v[min);
min = Heapily (v, min);
Procedure MHSA (V, P)
Input : v : Computer array, sorted by capacity In doecreasing ordor, P; sot (quoue) of
process. ¥

Output ; A scheduling of set P over set v,

Bulld ~ Min = Heap(v);

While P Is not empty do

Doequeue process Pi;

Assign process pi to Computer Vroot located at min-heaproot,

update the load of Computer Vroot; Min-Heapity (V, root);

Q 44. A max heap Is glven with n elements and Its helght Is log(n). Write an
sfficient algorithm to find minimum element in heap. Also calculate the time and space
complexity, (PTU, Dec, 2019)

Ans. Algorithm :

In sach step you need traverse both left and right subtrees in order 1o search for the
minimum slement,

Min element from Max Heap :

1. Boarch at last lovel = 0 (n/2) = O(n)

;' Replace searchod sloment with last element and docroase heap size by 1 = 0(1).

7}':‘:{:7 "fOfO heapify on replaced element = O(logn)

% complerity of above approach is 0(n),

Qaa

AR

Chapter

Computabllity of Algorithms, Computabllity classes - P, NP, NP-complete and NP-hard,
Cook's theorem, Standard NP-complete problems and Reduction techniques,

4

Tractable and Intractable Problems

® o>

10.

1,
12,

POINTS TO REMEMBER /22

A computational problem Is the encoded format of a problem, which is independsnt of
spoolfio Input

A compultational problem which only answers In the form of Yes-or-No is called decision

problem,

A docision problem s called decidable or effectively solvable if it is a recursive set.

P Is also known as DTIME/PTIME, which Is one of the most primary complexity classes.

A P=problom I8 always lies in NP,

LInear programming I8 known to be NP and not to be P, It was proposed by L. Khachian
in 1979,

Class P is a clase of decision problems that can be solved in polynomial time by
(doterministic) algorithms.

Class NP Is the class of decision problems that can be solved by nondeterministic
polynomial algorithms.

All NP-complete problems are NP-hard problems but some NP-hard problems are not

NP-complete problems.

Thore are two types of polynomial reductions. These are :

() Karp Reductions

(I Cook Reductions.

A Hamiltonlan circult, also known as a Hamiltonial cycle.

There are three main concepts are related to graph coloring. These are :
() Vertex coloring

() Edge coloring

() Face coloring

133 -

LODS Design & Analysis of Algorithms
136

1 mm:%wmxwolvmﬂ“"m"‘a’p’ ekl bl
instance of problem X can be solved usmg
o (i) Polynomially many standard computation steps, plus —
() Ore call on some m:ﬂ B’ﬂfm;z'ﬁo% reducible to problem Y jf
2. Cook Reductions : ;
? problem be solved using
s m m:yfntandard computation steps, plusj
@ P ially many call on some instance to an algorithm that solves problem Y.
::. Cook’s mm - The Cook’s theorem shows that the satisfiability problem ig
NP-complete. Without loss of generality we assume that languages in NP are over the alphabet
{0, 1). Lemma 1, useful for the proof, states that we can restrict the form of a computation of
a NTM that accepts languages in NP.
Lemma 1: If L € NP, then L is accepted by a 1-tape NTM N with alphabet {0, 1} such
that for some polynomial p (n), the following properties hold.
1. N's computation is composed of two phases. These are :
(a) The guessing phase
(b) The checking phase
2. In the guessing phase, N non-deterministically writes a string ||y directly after the
input string, and in the checking phase, N behaves deterministically. .

3. N uses at most p(n) tape cells, never moves its head to the left of w, and take
exactly p(n) steps in the checking phase.

A boolean formula f over variable set V is in conjunctive normal form (CNF) if

— Am K
F=Ay Vit i

for some value of m and Ki, 1 <i <m, where literal /; is either x or X for some xeV. For

each i, the term V’ﬁ ljjis called a clause of the formula. f is satisfiable if there exist a truth

assignment to the variables in V that sets f to true. CNFSAT is the set of satisfiable Boolean
formulas in CNF. '

Q 8. Prove that CNFSAT is NP-complete.
Ans. It is not hard to show that CNFSATeNP. To prove that CNFSAT is NP-complete,

we show that for any language LeNP, L < f CNFSAT.

Let} € NP and let N be a NTM accepting L that satisfies the properties of Lemma 1. Let
the transition function of N be 5. Let the states of N be o, - Qy. Let Sy, Sy, S, denote 0, 1
:_';], respectlvely. Assume that the tape cells are numbered consecutively from the left end of
e input, starting at 0. On input w of length n, we show how to

o truct a formula in CNF
form fw, which is satisfiable i - cons
follows : Isfiable if and only if w is accepted by N. The variables of fw are as

Mmmww 137
variables Qfi, K] Hii, $6,1.0
Range 0<isp(n) 0si<p(n) 0si<pin)
Osk<r 0<jsp(n) O<j<pim)
O0<is?2
Meaning At step i of the At step i of the At step i of
the state of N is gk. the head of N is phase, the symbol
on tape square j. in square i is si.

A computation of N naturally corresponds to an assignment of truth values 1o the variables.

- Other assignment to the variables may be meaningless. For example, an assignment with Q

fi, K] =Q [i, K] = true, K = K', would imply that N is in two different states at step i, which is
impossible. Our goal is to construct fw so that it is satisfied only by assignments 1o the varables

that correspond to accepting computations of N on w . The clauses of fw are constructed to
ensure that the following conditions are satisfied :

1. Ateach step i of the checking phase, N is in exactly 1 state.
2. Ateach step i, the head is on exactly one tape square.

3. At each step i, there is exactly 1 symbol in each tape square.
4

. At step 0 of the checking phase, the state is the initial state of N in its checking
phase, and the tape contents are wLly for some y.

5. A step p(n) of the checking phase, N is in as accepting state.

6. The configuration of N at the (i + 1)st step follows from-that at the ith step, by
applying the transition function of N.

Consider condition 1. For each i, we have the following clause :
Qfi,ovarf, V... vaif,r.
This clause ensures that the machine is in at least 1 state at step i. We also need
clauses to ensure that N is not both in state qj and qj :

Q[i,j] v alii] foreachj=#j,0<jj<r.

Conditions 2 and 3 are handled similarly. Conditions 4 and 5 are quite easy. Finally,
consider condition 6. For each (i, j, k, 1) we add clauses that ensure the following : If at step i,
the tape head of N is pointing to the jth tape cell, N is in state gk, sl is the symbol under the
tape head, and (qk, sl, gk, sl', X) e 3, where Xe{L, R} then at step i + 1, the tape head i¢
pointing to the (j + y)th tape cell where y =1 if X=Randy = -1 if X=L, N is in state qk' anc
the symbol in cell j is sl'. The following clauses ensure this :

Qi K] VH[i VSl vali+1K]

QL K] VH[L VST] VH{i+1j+y]

QK] VH[] VS[iil]vSi+1i 1]

All of the clauses for condition 1 to 6 can be computed in polynomial time.

s O

138 LORDY Design & Analysls of Algorithms

Q 9. Prove that CLIQUE Is NP-Complete.
Ans. It is easy to verity that a graph has a clique of size K If we guess the vertices

forming the clique. We merely examine the edges. This can be done in DOWHOWZ:N time.
- We shall now reduce 3-SAT to CLIQUE. We are given a set of K clauses and must buil
a graph which has a clique if and only if the clauses are satisfiable. The literals from the
clauses become the graph’s vertices. And collections of three literals shall make up the clique
in the graph we build. Then a truth assignment which makes at least one literals true per
clause with force a CLIQUE of size K to appear in the graph. And, if no truth assignment
satisfies all of the clauses, there will not be a clique of size K in the graph.
To do this, let every literal in every clause be a vertex of the graph we are building. We wish
to be able to connect true literals, but not two from the same clause. And two which are complements
cannot both be true at once. So, connect all of the literals which are not.in the same clause ang
are not complement of each other. We are building the graph G = (V, E) where :
V = (<X, i> | X is in the ith clause)

E={(<X.i>,<Y,j>) [X= Y and i}

Now we shall claim that if there were K clauses and there is some truth assignment to
the variables which satisfies them, then there is a clique of size K in our graph. If the clauses
are satisfiable then one literal from each clause is true. That is the clique because a collection
of literals (one from each clause) which are all true cannot contain a literal and its complement,

And they are all connected by edges because we connected literals not in the same clause .

(except for complements).

On the other hand, suppose that there is a clique of size K in the graph. These K
vertices must have come from different clauses since no two literals from the same clause
are connected. And, no literal and its complement are in the clique, so setting the truth
assignment to make the literal in the clique true provides satisfaction. A small inspection
reveals that the above transformation can indeed be carried out in polynomial time. Thus the
CLIQUE problem has been shown to be NP-hard just as we wished.

Q 10. Write Cooks statement. (PTU, Dec. 2005)

Ans. in the celebrated Cook-Levin theorem, Cook proved that the Boolean satisfiability
problem is NP-complete.

Shleuuu:SaﬁsﬁabﬂityisinPifandonlyifP=NP.

Q 11. What is Hamiltonian Cycle? Give suitable example.

Ans. Hamiltonian Cycle : Let G be the given graph which is connected with n vertices.

%.G=1(V,E)

“*‘a'eVia‘ﬂ\esa of vertices, E is the set of edges and n is the number of vertices.

mm Cycle ig 2 cycle or a round trip v@ich isistan tfom one point or vertex and

&‘em;‘:ﬁ;mandm backto its starting point.

B2t i 21, 3&{ Whet 2 hamiftonian circuit, also known as a Hamiltonian cycle is a
Starting W“"’ €3 gragh which touches each vertex exactly once and also return to the

_‘

ractable and Intractable Problems

. — 13
For example : "

(D
OO

The graph G contain 5 vertices. There are two Hamiltonian cycle in thig
Cycle1:1 525354551
The cycle 1 starts from vertex 1 then vertex 2, 3, 4, 5 and comes back to vertex 1. In
this cycle each vertex visits exactly once and its starting and ending point is same that 81,
Cycle2:1 55954535251
The cycle 2 also starts from vertex 1 then visit vertex 5, 4, 3, 2 and comes back to
vertex 1.

Q 12. What are the steps involved in proving a problem NP-complete ? Specify
the problems already proved to be NP-complete. (PTU, Dec. 2014)

Ans. First, try to prove it to be NP-hard, by

1. finding a related problem which is already found to be NP-hard (choosing such a
suitable “source” problem close to your “target” problem, for the purpose of developing poly-
trans, is the most difficult step), and then .

2. developing a truth-preserving polynomial problem-transformation from that source
problem to your target problem (You will have to show the transformation - algorithm’s)

(i) Correctness and

(i) Poly-time complexity.

Significance : If anyone finds poly algorithm for your “target” problem, then by using
your poly-trans algorithm one would be able to solve that “source” NP-hard problem in poly-
time, or in other words P would be = NP.

Second try to prove that the given problem is in NP class : by developing a polynomial
algorithm for checking any “Certificate” of any problem-instance.

Q 3-SAT is NP-Complete

QO SAT in CNF is NP-Complete

QO The CLIQUE PROBLEM is NP-Complete

0O The INDEPENDENT SET PROBELM is NP-Complete.

Q 13. Differentiate between deterministic and non-deterministic algorithms.

(PTU, May 2010 ; Dec. 2009)

A i i inistic if for a given input the output generated is same for a

ns. Algorithm is deterministic i g i
function. A mathematical function is deterministic. Hence, the state is known at every step of
the algorithm.)
Algorithm is non deterministic if there are more than one pets e 31907:::1"‘ ch“a:k;e
Due to this, one cannot determine the next state of the machine running the algorithm.

would be a random function.

140 LO3DD Design & Analysis of Algorithmg

Non deterministic machines that can't solve problems in polynomial 'time are NI.D. Hlence,
finding a solution to an NP problem is hard but verifying it can be done in polynomial time.
Q 14. What is Np-complete? ‘
(PTU, Dec. 2017, 2016, 2015, 2006 ; May 2018, 2017, 2016, 2014, 2009, 2006)
Ans. In computational complexity theory, the complexity class NP-complete (abbreviated
NP-C or NPC) is a class of decision problems. A decision problem L is NP-complete if it is in

the set of NP problems so that any given solution to the decision problem can be verified in

polynomial time, and also in the set of NP-hard problems so that any NP problem can be
converted into L by a transformation of the inputs in polynomial time.

A tecision problem d is said to be NP-complete if :

1. It belongs to class NP.

2. Every problem in NP is polynomially reducible to D.

Q 15. What is a NP-Hard problem? (PTU, Dec. 2015 ; May 2017, 2014, 2013, 2008)

Ans. NP-hard : In spite of its name, to say that problem is NP-hard does not mean that
itis hard to solve. Rather it means that if we could solve this problem in polynomial time, then
we could solve all NP problems in polynomial time. Note that for a problem to be NP hard, it
does not have to be in the class NP. Since, it is widely believed that all NP problems are not
solvable in polynomial time, it'is widely believed that no NP-hard problem is solvable in
polynomial time. . s ’

A notion of an NP-hard problem can be defined more formally by extending the notjon
of polynomial reducability to problems that are not necessary in class NP including optimizati
problems.

Q 16. What are P and NP problems? (PTU; May 2012)

Ans. Computer scientists use the Big O notation to describe concisely the running time

on

~ of an algorithm. If we say that the running time of an algorithm is quadratic. Or O (n2), it

means that the running time of an algorithm on an input of size n is limited by a quadratic
function of n.

Q 17.-What are NP-complete algorithms? (PTU, May 2012)

Ans. The polynomial time algorithms are used to solve the NP-complete problem.

It is believe that NP-complete problems do not have polynomial time algorithms and
therefore are intractable. Secondly, if any single NP-complete problem can be solved in
polynomial time, then every NP-complete problem has a polynomial time algorithm.

Q 18. What are NP, NP Hard and NP complete problems? Explain by giving an
example of each. (PTU, Dec. 2007)

Ans. Briefly, NP stands for “Non-deterministic polynomial time” and it marks a class of
problems that capn be solved in

ey polynomial time on a non-deterministic turing machine. The
g :; . is the “non-deterministic™ which means that it is the case when more
Ution could be chosen and at least one path solves it in a polynomial time
The problem is a4 '

how to find the right solution path and whether we can find the deterministic

way that could also solve it in polynomial time -- marked as P,

Tractable and Intractable Problems

)

In other words, there is a bunch of problems that could be solved b
machiné in polynomial time. Apparently, all problems that could be solved in polynomial e
on deterministic machines also belongs to NP problems (they are subset of them, becayse
_deterministic machine is somehow more capable).

For some problems, for which no deterministic solution was found that would find the
solution in polynomial time. These problems are marked NP-complete. It is believed (but not
proved) that it is not possible to find them, hence the intersection between P and NP-complete
is empty-

See also P = NP problem

NP-hard are “at least as hard as the hardest problems in NP”. The difference is that the
non-deterministic Turing machine uses some special thing called “oracle” that helps to make
some decisions in constant time (i.e. clearly very artificial thing that is used only to study
some decision problem).

Q 19. Differentiate. between NP-hard and NP-complete problems with example.

(PTU, Dec. 2019, 2011, 2009, 2008 ; May 2015, 2007)

Ans. Formally, NP-complete is a notion for so called recognition (or decision) problems,
i.e., problems defined by a question for which the only two possible answers are a YES or a
NO. It is defined with respect to polynomial reductions. From Nemhauser and Wolsey “X NP
is said to be NP-complete if all problems in NP can be polynomially reduced to X.”

NP-hard problems are usually optimization problems whose recognition version is NP-

Y non-detenninis\ic

non

. complete. For example the TSP-optimization is NP-hard because its TSP-recognition version

is NP-complete (TSP-rec is as follows : given k is there a tour of length < k?). Nemhauser and
Wolsey say “A problem is NP-hard if there is an NP-complete problem that can be polynomially
reduced to it.” Thus if a problem is NP-hard it is at least as difficult as any NP-complete
problem. '

The notion of an NP-hard problem can be defined more formally by exten@mg t-he
notion of polynomial reducability to problems that are not necessary in class NP including
optimization problems.

les of both.
Q 20. Compare NP hard and NP complete problems by taking examp
g (PTU, May 2010)
Ans. NP-complete : A problem that is NP-complete can be solved in potynomial time iff
i omial time.
all other NP-complete problems can also be solved in polynom)

All NP-complete problems are NP-hard but some NP-hard problems are known not to
be NP-complete.

NP-complete < NP-hard

Q 21. Give an example of NP-complete pmblfm. .
Ans. An interesting example is the graph isomorphism problem, the graph theory pr

i i . Two graphs are
of determining whether a graph isomorphism exists between two graphs. Two grap

; : i ming vertices. Consider
isomorphism if one can be transformed into the other simply by renaming _

these two problems :

(PTU, May 2011 ; Dec. 2007)

142

LO3D) Design & Analysis of Algorithmg
S e ——

Q Graph Isomorphism : Is graph G, isomorphic tq graph G,? .

QO Subgraph Isomorphism : Is graph G, isomorphic to a subg.raph of g.raph Gy?

The éubgraph Isomorphism problem is NP-complete..The graph |§o'morph|sm problem
is suspected to be neither in P nor NP-complete, though it is in NP. This is an ex.amp|e of a
problem that is thought to be hard, but isn’t thought to be NP-complete. The easiest way tq
prové that some new problem in NP-complete is first to prove that it is in NP, and then tq
reduce some known NP-complete problem to it. Therefore, it is useful to know a variety of

NP-complete problems. The list below containts some well-known problems that are Np.
complete when expressed as decision problems.

O Boolean satisfiability problem (Sat.)
O N-puzzie
O Knapsack problem
O Hamiltonian path problem
O Travelling salesman problem
O Subgraph isomorphism problem
QO Subset sum problem
Q Clique problem
Q Vertex cover problem
O Independent set problem
O Dominating set problem
Q Graph coloring problem

To the right is a diagram of some of the problems and the reductions typically used to

Tractable and Intractable Problems
e

i ‘ itional example is the decision-probi i
re in P. The traditiona P problem version of the Trayeji
Problem (decision-TSP). eling Salesman

NP-hard : |f an NP-hard problem can be solved in polynomial time th
problems can also be solved in polynomial time.

All NP-complete problems are NP-hard but some NP-hard problems are known not to
be NP-complete.

NP-complete : In computational complexity theory, the complexity class NP-complete
(abbreviated NP-C or NPC) is a class of decision problems. A decision problem L is NP-
complete if it is in the set of NP problems so that any given solution to the decision problem
can be verified in polynomial time, and also in the set of NP-hard problems so that any NP
problem can be converted into L by a transformation of the inputs in polynomial time.

Q 23. Describe how polynomial-time reductions are used to prove that a problem
is NP-complete. (PTU, May 2016)

Ans. Polynomial time reductions are used to prove that a problem in NP complete for a

given problem U, the steps involved in proving that it is NP complete are mentioned below :
1. Show that U is NP.

2. Select a known NP-complete problem V

3. Construct a reduction from V to U.

4. Show that the reduction requires Polynomial time.

These steps show that polynomial time reduction is important to prove a problem is NP
complete. If we can find a polynomial time algorithm for satisfiability, then all other problems
in NP can be solved in polynomial time. To prove that all other problems reduce to the given

en all NP‘COmplete

- b F

prove their NP-completeness. In this diagram, an arrow from one problem to another indicates
the direction of the reduction. Note that this diagram is misleading as a description of the
mathematical relationship between these problems, as there exists a polynomial-time reduction

between any two NP-complete problems : but it indicates where demonstrating this polynomial-
time reduction has been easiest.

problem, that is a candidate problem is to be tested for NP completeness, is an involved
process. An alternative is to show that some other know NP complete problem reduce to the
new problem to be characterized. The other NP-Complete prob that are quite hardy to prove
NP completeness of many other problems include 3-SAT, 3-dimensional match up, vertex
cover, clique etc.When constructing a polynomial time reduction from 3-SAT to a prob, we
‘look for structures in the problem that can simulate the variable and clauses in Boolean
formula.
Q 24. What is closest pair problem ? (PTU, Dec. 2019)
Ans. The closest pair problem is a problem of computational geometry given n points in
metric space, find a pair of points with the smallest distance between them. .
Q 25. What is a 3SAT problem ? (PTU, Dec. 2019)
Ans. 3SAT or the boolean satisfiability problem, is a problem tha} ask; what is th.e
fastest algorithm to tell for a given formula in boolean apebm whe\hgr 13 is satisfiable that is
whether there is some combination of values of the variables that will give.

_— e e

Q 22. Explain in detail basic concepts of P, NP, NP-hard and NP-complete
problems. (PTU, May 2013, 2012 ; Dec. 2010, 2009)
Ans. A decision problem is in P if there is a known polynomial-time algorithm to get that

answer. A decision problem is in NP if there is a known polynomial-time algorithm for a non-
deterministic machine to get the answer.

Problems known to be in P are trivially in NP — the non-determistic machine just never
troubles itself to fork another process, and acts just like a deterministic one. There are problems
that are known 1o be neither in P nor PN, a simple example is to enumerate all the bit vectors
of length n. No matter what, that takes 2" steps. (Strictly, a decision problem is in NP if a non-

dett.anninisﬁc machine can arrive at an answer in poly-time and a deterministic machine can
verify that the solution is correct in poly time.)

Qut' there. are some problems which are known to be in NP for which no poly-time
determistic algorithm is k

nown ; in other words, we know they're in NP, but don't know if they'

Qaa

Chapter

Advanced Topics

Approximation algorithms, Randomized algorithms,
Heuristics and their characteristics.

POINTS TO REMEMBER @'

1. Approximating algorithms : An approximate algorithm is a way of dealing with NP-
completeness for optimization problem.

2. Heuristies : Heuristic are a flexible techmque for quick decisions, particularly when
working with complex data.

3. Randoized algorithms : Randomized algorithms uses random number to decide, what -
to do next anywhere in its logic.-

QUESTION-ANSWERS

Q 1 Define Set cover apprommaﬂon problem.
Ans. The Set-cover problem : A finite set X and a coIIect|on of its subsets F such that

US=X.
SeF

The set cover optimization problem is to find a minimum set C < F that covers X.
. 51 ,.‘ o‘) »

Al
aDBE

GREEDY-SET-COVER(X, F);

=X

C:=Q

while U = &

do Choose SeF with |S A U| - max
U:=U-8
C:=Cuis}
return C

145

LO3DS Design & Analysis of Algorithms

times and each Its lteration
SET-Cover Is 0 (1x1. [F|.min

146
Since the while-loop is exe
requires 0 (1x1. IFI) computations,

(1 x 10 'F'))‘
Q 2. Explain vertex cover approximation algorithm In detall. (PTU, May 2014)

Ans. The vertex cover approximation algorithm : Let G be an undirected graph. A
vertex cover of G is & subset COVER of V such that for every (u,v) € E, at least one of u or

VeCOVER.
The vertex cove

optimal vertex cover.
While finding the optimal vertex cover is an NPC problem, there is a p-time approximation

thm that retumns a near-optimal vertex cover.
APPROX-VERTEX COVER (G)
1.C=0

2. E' = E(G)

3. Whie E'# @

4. Let (u,v) be an arbitrary edge of E'

5. C = Cu{uv}

6. Remove from E' every edge incident on either u or v
7. Retumn C
Example :

cuted at most min {1x1, |FI}
the running time of GREEDY-

r optimization problem Is to find a vertex cover of minimum size =

algori

(e) (L))
Approx-vertex-cover in action
Approx-vertex-cover is a p-time 2-approximation algorithm :
Proof : The algorithm runs in O(V + E time)
The algorithm clearly returns a vertex cover, since it loops until all edges have been
nc;ved. Each edge removed in line 6 was covered by some vertex of an edge removed in

. . 3
pdvanced Topics i ‘1

Lot A denote the set of edges removed _
e The optimal cover C* must contain at least or;e end -
‘@ No two edges in A share an end point becaus: point of each o
/. withan edge in A are removed in line 6, all edges that g
gince rio two_edges-in A are covered by t
crzAl N
is a lower bound on the size of ' e ol
gach execution of line 4 picks an edge, both of Whcse- .
endpoints a

h;he edges in ,
e an endpoiny

inC*, we have that

approximate cover C. This gives us an upper bound on the size of C Ea"*adiw —
: ICl=21Al - - '
Combining equations (1) and (2), we get i)

ICl s2|C*|

Q 3. Prove that
The GREEDY-SET-COVER is a polynomial time p(n) - approximation n{mh
ml

d
where p(n) = H(Max {|S| |SeF}) and H (d) = Z (l) y
i=1 l
Ans. Proof : Let C be the set cover constructed by the GREEDY-S
-SET-CO i

and let C* be a minimum cover. e

Let Si be the set chosen at the i-th execution of the while-loop. Furthermore, let x € X be
covered for the first time by Si. We set the weight Cx of x as follows :

Cx =

One has :

|Cl (1)

g
Q
™
™
Q

" We will show later that for any SeF

> Cx sH(IS) l2)

xeS

from (1) and (2) one gets :

|C| =< ZH(|S|)le'|.H(max{|S||SeF})
SeC* *
Which completes the proof of the theorem.
To show (2) we define for a fixed ScFandi<|Cl
y =[S - (SU ... usi)l,

that is, number of elements of S which are not covered by S1, ..o , Si.

|

1438

Let ug = |S] and k be the minimum index such that uy = 0. Then u,_y 2 y; and Uiy —
elements of S are covered for the first time by Si for i = 1, ..., K.

One has :

K
> Cx = 2 (Ui -w).
xeS i=1
Since for any SeF \ {S1, ..., Si-1}
IS;- Sy ... USI- NI2[S = (Syv ... USi - 1)| = ;4
due to the greedy choice of Si, we get :

= 1
D.Cx D (Ui -u). —
Ui—1
xe$ i=1
Since for any integers a, b with a < b it holds :
2 1 1
HEb) - H@) = 2. (;) 2 (b-a). [g)
i=a+1
We get a telescopic sum :
K

2. Cx = 3 (H(u-1)-H(w)
xe S i=1
= H(up) — H(uk) = H(ug)- H(0)
= H(ug) = H(IS])
which completes the proof of (2).
Since, H(d) < Ind + 1, the GREEDY-SET-COVER algorithm has the approximation rate
(Inx} + 1).

Q 4. Prove that the APPROX-TSP is a polynomial-time 2-approx. algorithm for the
TSP problem with the triangle inequality.
Ans. Let H* be an optimal Hamilton cycle. We construct a cycle H with C (H) < 2.C (H*).
Since T is a minimal spanning tree, one has :
C(T) =C(H")
We construct a list L of vertices taken in the same order as in the MST-PRIM algorithm
and get a walk W around T. Since W goes through every edge twice, we get :
C(w) = 2.c(T),
Which impties
C(W) < 2.C(H").
The walk W is, however, not Hamiltonian.

We go through the list L and delete from W the vertices which have already been
visited.

LORD) Design & Analysis of Algorithms

o4 BRI

. Advanced Topics

R .. P
B This way we obtain a Hamilton cycle H. The yia N
e C(H) < C(W) 1angle inequality proyiges

Therefore, C(H) < 2.C(H*).

Q 5. Explain TSP approximation problem,
Ans. The TSP Problem : A complete graph G -
C:E->R=x0

The TSP approximation problem is to find a Hamiltonian
For A c E define

CA) = D C(uv)

(u,v) €A

(V,E)and a weight function

cycle in G of minimum weight

We assume the weights satisfy the triangle inequali

APPROX-TSP (G, C) :

1. Choose a vertex v e V.

2. Construct a minimum spanning tree T for G rooted in V (use, e.g. MST - PRIM
algorithm).

3. Construct the pre-order traversal W of T.

4. Construct a Hamilton cycle that visits the vertices in order W.

b4 Lo

ty for all uvew e V.

i
&

14 _
—7@— =0 17>——ﬁ—\§%

(c) (d) -

150

LO3IDD Design & Analysis of Algorithms

Q 6. Explain independent-set problgm,
Ans. The independent-set problem : An undirected graph G = (V, E). The independent

set problem is to find & maximum independent set.

1
For veV and n = [V| define 35=n Evdeg (V) —_—

N(V) = {u e V| dist(u,v) = 1}.
INDEPENDENT-SET(G) ; o
: S:=2
While V (G) = & do
Find v € V with deg(v) = min u € V deg(u)
S:=Su{V})

G:=G-(v UN(V))
return S. :

The independent-set algorithm computes an independent set S of size q > n/(5 + 1).
Let v; be the vertex chosen at step i and let d; = deg (v)).

One has :

qQ
Z (d; +1) = n. Since at step i we delete di + 1 vertices of degree at least di each, for the
i=1

sum of degrees Si of the deleted vertices one has Si 2> di(di + 1). Therefore,

q q
8n = Z:Vdeg(") 23823 di(di+).
i=1 i=1

This implies

- q
i=1 i=1)

= qz—r-’—.

5+1

Q 7. Briefly explain maximum set-cover problem.
Ans. The maximum-set-cover-problem : A finite set X, a weight functionw: X -5 R, a

collection F of subsets of X and K € IN.

The maximum set cover problem is to find a collection C < F of subsets with |C| = K
such that > w(x)is maximum

xeC
MAX|MUM-COVER(X. F, W) :
Ui=X
C:=92

fori: =1toKdo

. solution. The goal of an approximation algorithm is to com

PR——

. bound of p (n) if for any input of sign n, the cost ¢ of the solution produced by the

advanced Topics
advanced TOP®

Ghoose SeF with W (S n U) - mam'
U:=U-8
C:=CuS

return C.

Q 8. Write note on the Approximating algorithms.
: (PTU, May 2019,"2017 ; Dec. 2018, 2017 201¢
AnS. Approxlmatlng I.ugc_trlthms : An approximate algorithm is a’wa) 2013_, 2005
NP-completeness for optimization problem. This technique does not gugr:r:tdea':‘g with
ee the best
E lue in a reasonable amount of i ich i o close as possible 10 the
optimum value of time which is at most polynomial time
Suppose we have some optimization problem instance i

e i, which has a |3

feasible solutions. Also let ¢ (i) be the cost of solution produced by app e
~ ¢* (i) be the cost of optimal solution. For minimization problem, we ar

* " golution of a given instance i in the set of feasible solutions, such tha

roximate algorithm and
e interested in finding a
te(i)/c* (Ybeass

as possible. On the other hand, for maximization problem, we are interested in ﬁndi:: :
solution in the feasible solution set such that c*(i)/c(i) be as small as possible.

We say that an approximation algorithm for the given problem instance i, has a ratio

algorithm is within a factor of p (n) of the cost c* of an optimal solution.
That is

approximation
max (c (i) /c* (i) /c(i)) < p (n)
This definition applies for both minimization and maximization problems.

Note that p (n) is always greater than or equal to 1. If solution produced by approximation

_algorithm is true optimal solution then clearly we have p (n) = 1.

“—_For a minimization problem, 0 < ¢* (i) < c (i), and hte ratio c (i) / ¢* (f) gives the factor
by which the cost of the approximate solution is larger than the cost of an optimal solution.
Similarly, for a maximization problem, 0 < ¢ (i) < ¢* (i), and the ratio c* (i) / c (i) gives the
factor by which the cost of an optimal solution is larger than the cost of the approximate
solution.

Relative Error : We define the relative error of the approximate algorithm for any input
size as

mod [c (i) —¢* (i) / c* (i)] o
We say that an approximate algorithm has a relative bound of € (n) if
mod [c (i) ¢* (i) /c* (i)] <& (n)
Q9. What are approximation algorithms? Define absolute app;orﬁm;:;n and)
E-approximation with example. T
OR
the various
_ What is the importance of approximation algorithms? Also ex;(»:,:{z S
types of approximation algorithms. b i
. mate solutions to
Ans. Approximation algorithms are algorithms U A S

i
]
]

152 LO3DD Design & Analysis of Algorithms

optimization problems. Approximation algorithms are often as§ocia‘ed with NP-hard prob|ems
- since it is unlikely that there can never be efficient polynomial time e?(acl algo'rithms s<.)|v.|ng
NP-hard problems, one setties for polynomial time sub-optimal solutions. Unlike heunstuf:s,
which usually only find reasonably good solutions reasonably fast, ong wa_nt_s provable solution
quality and provable run time bounds. ldeally, the approximation is optimal up.t('x a small
constant factor (for instance within 5% of the optimal solution). Approximation algorithms are

increasingly being used for problems where exact polynomial-time algorithms are knowr but
are too expensive due to the input size.

A typical example for an approximation algorithm is the one for vertex cover in graphs;
find an uncovered edge and add both end points to the vertex cover, until none remain. It ig
clear that the resulting cover is at most twice as large as the optimal one. This is a constant
factor approximation algorithm with a factor of 2.

Definition 1. A is an absolute approximation algorithm if and only if for every instance
1 of problem P, \C* (1) — C (I)| < k for some constant k.

Approximation ratio p (n)
Q Given input to size n
Q C (1) is within a factor p (N) of C* (1) if

¢ C'(l)]
max = <p(n
(C'(I) C())
QO Another measure of approximation is given in literature as

*(n-¢
Lol

Definition 2. An e-aproximation algorithm is a p (n) approximation algorithm for which
p (n) < e for some constant
Q 1-approximation implies C (I) = C* (1), resulting in an optional solution

Q An approximation algorithm with a large p (n) may return a solution that is far worse
than optimal

Approximation scheme
Q Tradeoff between computation time and quality of approximation

Q An algorithm may achieve increasingly smaller p (n) using more and more
computations time

Q Approximation algorithm takes a value € > 0 as an additional input such that for any
fixed €, the scheme is a (1 + &) approximation algorithm.

Q 10. What are approximation algorithms? Explain approximation vertex cover.
(PTU, May 2009)
Ans. Approximation algorithms are algorithms used to find appro:

B ximate solutions to
optimization problems. Approximation algorithms are often associated with NP-hard problems;

v

s

pdvanced Topics

/ .
\ \ gince it is unlikely that there can never be

em
NP-hard problems.’ one settles for polynomial time sul—optimr;:atllzzhi)i(:: \ a|g°f‘1hms solvj
| which usually only find reas.onably good solutions reasonably fast, one wa:{sUnhke heuzistica.
quality and provablg run tume. bgunds. Ideally, the approximation is gptj P, Solution
constant factor (for instance within 5% of the optimal solution). ApprOXir: Mal up to 5 ¢
increasingly being used for problems where exact polynomial-time alqo, ':lhtuon “Worting =
I‘ are 100 expensive due to the input size. gonthms are knowy but
A typical example for an approximation algorithm is th
find an uncovered edge and add both end points to the vertee: Zi\:z: V::g:x e raph;
‘ clear that the resulting cover is at most twice as large as the optimall on no.ne‘ . lrie
' factor approximation algorithm with a factor of 2. ™ Tk Constant
i NP-hard problems vary greatly in their approximability : some such a

prjablem, can be approximated within any factor greater than 1 (such a famjl 8 the bin Packing
_algorithms is often called a polynomial time y

o of approximay

: : - approximation scheme or PTAS). Ot —
impossible o approximate within any constant, or even polynomiaj i ers are
as the maximum clique problem.

ess P = NP, sych
NP-hard problems can often be expressed as inte

. P il ger programs (IP) and
1 in exponential time. Many approximation algorithms emerge from the)linearsowed exac?tty
i relaxation of the integer program. HRng
1 - Vertex Cover : The minimum vertex cover
R, : problem on a graph asks for as
1 °f, vemce:s as possible that between them contain at least one end point of every :g:e“ :\ ts:el
! graph. It is known that vertex cover is NP-hard, so we can't really hope to find a polynomial-
time algorithm for solving the problem exactly
1 algorithm :

. Instead, here is a simple 2-approximation
Approximate Vertex Cover :

while there are unmarked edge .
choose an unmarked edge
mark both its endpoints

|
i
i
& oo To show that this gives a 2-approximation, consider the set E' of all edges the algorithm

: 9868, None of these edges share a vertex, so any vertex cover must include at least |E
erlices. The algorithm marks 2 |E'| vertices.

'\ Q 11. What are heuristics ?

8 Ans. Heuristics are a problem solving method that uses shortents to produce_good
‘; t:ro :gh solutions given a limited time frame or deadiine. Hecuristics are a flexible technique
\ uIC
|

|

i

|

|

i

?

heuri .k decisions, particularly when working with complex data. Decisions made using an
8tic approach may not necessaril

imal. Heuristic is derived from the Greek word
Meanj y be optima

NG o discover'. ;
3 ImHeuristics facilitate timely decisions. Analysts‘ in every industry use rules of thumb such
S e

ligent guesswork, trial and error, process of elimination, past formulas and the analyis

Storical data to solve a problem. Heuristics methods make decision making simpler and
¥ th’°“9h short cuts and good enough calculations.

LO3IDD Design & Analysis of Algorithms

| AP . oy
What is randomized

s _ that uses random number A
Algorithm. For eg, in Randomized

the next pivol.
e mp':' e] ini "nsti? lexity. For example
randomized algorithms have deterministic time comp ‘ .
implementaty Ka algorithm has time complexity as O(e). Such algorithms are
o e i 'gesand are easier to analyse for worst case. On the other hand,
algorithms is’ dependent on value of random variable.

to decide what to do next anywhere in its
quick sort, We use random

cafled .
m 0 .
- ' ; .’ :, algorithm are called Las Vegas Algorithm. These algorithm are typ|cfa||y
analysed expected worst case. To oompute expected time taken in worst case, all possible
values ol:: used random variable needs to be considered in worst case and time taken by
i is the expected
needs to be evaluated. Average of all evaluated times Is
every possible values :
wn : ized algorithm ?

Q 14. What are the advantages of random

T i i implement
1. The algorithm is usually simple and easy to imp . .
: n:he algorithm is fast with very high probability and/or it produces optimum output

with very high probability.
Q 15. Explain Bin packing pro .
Ans. Given n items of different weights and bins each of ca ach
a bin such that number to total used bins is minimized. It may be assumed that all items have

weights smaller than bin capacity.
Input : Weight []={4, 8, 1, 4,2, 1}
Bin capacity C = 10

blem with the help of an example.
pacity c, assign each item to

- Output : 2 ‘ .
Wl:pneed minimum 2 bins to accommodate all items First bin Contains {4, 4, 2} and
second bin {8, 2}
Input : Weight []={9, 8, 2, 2, 5, 4}
Bin capacity C = 10
Output : 4

We need minimum 4 bins to accomodate all items. : ‘
Lower bound : We can always find a lower bound on minimum number of bins required.

The lower bound can be given as :
Min no. of bins > = ceil ((Total Weight)/(Bin Capacity)) ;
In the above examples, lower bound for first example is “ceil 4+8+1+4+2+ 1)/19

= 2 and lower bound in second example is” ceil (9 +8 +2+ 2+ 5 + 4)/1 0" = 3 The problem is

a NP hard problem and finding an exact minimum number of bins takes exponential time.
These algorithm are for Bin packing problems where items arrive one at a time, each

must be put in a bin, before considering the next item.
1. Next fit : When processing next item, check if it fits in the same bin as the last item

¥
!
|

f
5
!
!
i
|
i
|
t
:
|
?
s
|

]
|
|

e ————— e

g : Topics
e ; i
% a new bin only if it does not. Next fit is & simple aigorithm. rew;‘*r-ﬂ

: items. Next fitis 2 a (
| n/1) extra space to process n PProximate e, the) time ap,
o)algo rithm is bounded by. twice of optional. Consider any two a dl::::\t: ;'ol bins ugeq b:
n8. The gum
of

this in these two bins must be >c; otherwise, Next fit would have py i

pin into the first. The same holds for all other bins. Thus, at most half the g 0

‘. next fit uses at most 2M bins if M is optimal. pa
2. First fit : When processing the next items, scan the previ

‘e item in the first bit that fits. Start a new bin only if it does r‘:o?:i'toi:sal:;so:r;r? rder and piace

3. Best fit : The idea is to place the next item in the tightest spot. That “ e exfstlng bins.

so that smallest empty space is left. Best fit can also be implemented in O(n IJ;:‘) ':i::;h: pin

sing

items of $8¢ong
ce Is wasteq and

' selfbalancing Binary search trees.
4. First Fit Decreasing : A trouble with online algorithm is that packing large ite 5
ms is

difﬁcun, especially if they occur late in the sequence. We can circumvent this by sonj
input sequence and placing the large items first. With sorting, we get first fit decreas;i g the
Best Fit Decreasing as offline analogs of online first fit and best fit. First fit decreasing p&?u::d

s

the best result for the sample input because items are sorted first. First fit decreasing can

also be implemented in 0 (n log n) time using self Balancing Binary Search Trees,

Q 16. Explain Back tracking using-No. Queens Puzzle.

Ans. Branch and Bound solution, after building a partial solution, we figure out that
there is no point going any deeper as we are going to hit a dead end. In back tracking,
solution we back track when we hit a dead end.

‘Back tracking : “The idea is to place queen one by one in different columns, starting
from the left-most column. When we place a queen in a.column, we check for clashes with

 already placed queen. In the current column, If we find a row for which then is no cash, we
mark this row and column as part of the solution, If we do not find such a row due to clashes,

then we backtrack and return false.”

L . ele . .
.. . o] .

‘. 0 o e 0

X ". ol e]e|e)e]ea X|o'le|[o ool a]ea
. “‘, £l . -

. . e|XxX}e s fale]ele
0 . Yo S) A -l

1. For the Ist Queen, there are total 8 possibilities we can place Ist Queen in any row

of first column. Let's place Queen 1 on row 3.
2. After placing Ist Queen, there are 7 possibilities left for the 2nd Queen. But wait, we

don't really have 7 possibilities. We cannot place Queen 7 on rows 2, 3 or 4 as
those cells are under attack from Queen 1. So Queen 2 has only 8 — 3 = 5 valid

positions left.

I S p——s

— L &% |

—p

156 LO3IDD Design & Analysis of Algorithms

3. After picking a position for Queen 2, Queen 3 has even fewer options ast most of the
cells in its column are under attack from first 2 Queens. We need to figure out an
efficient way of keeping track of which cells are under attack. Basically, we have to
ensure 4 things :

() No two queens share a column.
" (i) No two queens share a row.
(iii) No two queens share a top right to left bottom diagonal.
(iv) No two queens share a top left to bottom right diagonal.
Number 1 is automatic because of the way we store the solution. For number 2, 3 and
4 we can perform, updates in 0(1) time. The idea is to keep three Boolean arrays that tell us
which row and which diagonals are occupied.

Now for preprocessing we will create two NxN matrix one for/diagonal and other one
fondiagonal. Let's call them slash code and back slash code respectively. The trick is to fill
them in such a way that two queens sharing a same/diagonal will have the same value in
matrix slash code, and it they share\diagonal, they will have the same value in backslash
code matrix.

From NxN matrix, fill slash code and backslash code matrix using below formula :

slash code [row] [col] = row + col

backslash code [row] [col] = row — col + (N - 1)

Now before we place queen i or row j, we first check whether row j is used. Then we
check whether slash code (j + i) or backslash code (j — i + j) are used. If yes then we have to
try a different location for queen. If not, then we mark the row and the two diagonals are used
and recursion queen i + 1. After the recursive call return and before. we try another position
for queen i, we need to reset the row, slash code and back slash code as unused again, like
in the code.

Q 17. Explain travelling saleshman problem using Branch and Bound.

Ans. Given a set of cities and distance between every
pair of cities, the problem is to find the shortest possible tour o
that visits every city exactly once and returns to the starting

point. For example, Consider the graph shown in figure on 19 5
right side. ATSP tour in the graph is 0—1-3-2-0. The cost of (3)
the tour is 10+25+30+15 which is 80.

Branch and Bound solution : In branch and bound 7 35 2

method, for current node in tree, we compute a bound on best ,
possible solution that we can get it we down this node. If the bound on best possible solution
itself is worse than current best, then we ignore the subtree rooted with the node. The cost
through a node includes two costs.

1. Cost of reaching the node from the root.

2. Cost of reaching an answer from current node to a leaf.

O In cases of a maximization problem, an upper bounds tells us the maximum possible

soiution if we follow the given node.

!
|

|
|
|
|

S

P

. - eng Part is fiqyr; .
best possible solution. Below is an idea baseg to cgor::sgt:m > "y o Com, .
problem. . OUNGS for Trgy e i o

Cost of any toué::tn !f)et ert:.en as below - o

of tour T = (1/2) * ;
i 2) .& SUm; (Sum of Cost of
and in the toyr T) = S0ges ag
L lacen y,

For every vertex 4, If we consider two eq

overall

Where u € v.
Below are.minimum cost two edges adj

Thus a lower bound on the cost of any tour =

ﬁ advanced Topics : \

O In cases of a minimization problem, a |o,
solution if we follow the given mode. °" bound teyig u
In branch and bound, the challenging

ges through if
st of tour T 30 sum thei Costs, The
= (Sum of minimum weight ’

sum for all vertices would be twice of co
(Sum of two tour edges

adjacent to u) > tWo edge adjacent 1, u)

e . e sacent to e\-lre;:larode for above shows, graph.
0 (0.1), (0,2 -25c°“
1 (0, 1), (1,3) 35
2 (0,2), (2,3) 45
3 (0.3), (1,3) 45)

1/2 (25 + 35 + 45 + 45) = 75
Lets start enumerating all possible nodes :

1.

which the lower bound has been calculate

which
tour has

bound of the root.

To
that the

edges of 0 and 1 divided b

De

The Root Node : Without loss of generality, we assume we start at vertex “0”

d above. -

Dealing with Level 2 : The next |
g evel enumerates all possible vertice
are 1, 2, 3, N consider we are calculatin e i

g the vertex 1, since we moved from 0 to 1, our

now included the edge 0—1. This allows us to make necessary changes in the lower

include ed

ge 0-1, we add the edge cost of 0-1, and subtract an edge weight such
lowers bo :

und remains as tight as possible which would be the sum of minimum
y 2. Clealry, the edge subtracted can't be smaller than this.

3 ali . -
P aibic 'Ng with other levels : As we move on to the next level, we again enumerate all

Consider
alter the

vertices, for the above case going further after 1, we check out for 2, 3, 4, ... n.

lower bound for 2 as we moved from 1 to 1, we include the edge 1-2 to the tour and
New lower bound for this node.

Lower bound (2) = OId lower bound — ((Second minimum edge cost of 1 +
minimum edge cost of 2)/2) + edge cost (1-2)

’ ———d‘

LoRDd Design & Analysis of Algoriy,

Mg
How do we Charae
d approximation algorithms ? (PTU, Dec, t:(;;“
Q 18. Why do we need ap ct solution may be What e 5)

a
tion algorithms ? close to the ex .
T T b 10200 G0 e

Ch
interested. For example : the proximate solution may be g that on

, - hard problems, an ap can .
e pr:cgce'it';ol:wNaPre::onapble amount of computing time. We charac‘e”Ze
can expect to find w

n
instance | of a problem P. | gt Fo()) b
i feasible solution to every)
::Qont'hm tffwa:‘ %:'::; ::e:plitlon to 1 and let FA(I) be the value of the feasible solution 9enerate,
e value of a

by A.

168

We can characterize a number of approximation algorithms as desc_:ribed below -
1 eA:::}asolute approximation : A is an absolute approximation algorithm for Problem p
if and only if for every instance | or P,

\FO() - FA(l) \ < k for some constant k. s ‘ . :
2. f(n) - approximation : A is an f(n) - approximation algorithm if and only if for every
instance | of size n,
\FO(1) — FA(1) \ /FO(l) < f(n)
assuming that FO(I) > 0.
3. e-approximation : A is an €-approximation algorithm if ang only if for every instance
| of size n,

\FO(I) - FA(N/FO(I) < ¢, -
for some constant g, FO(I) is assumed to be greater than zero.

Qgao

